Suppr超能文献

使用基于水平集方法的新型混合隐式/显式框架进行脑结构映射。

Brain structural mapping using a novel hybrid implicit/explicit framework based on the level-set method.

作者信息

Leow A, Yu C L, Lee S J, Huang S C, Protas H, Nicolson R, Hayashi K M, Toga A W, Thompson P M

机构信息

Department of Neurology, Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA 90095, USA.

出版信息

Neuroimage. 2005 Feb 1;24(3):910-27. doi: 10.1016/j.neuroimage.2004.09.022.

Abstract

This paper presents a novel approach to feature-based brain image warping, by using a hybrid implicit/explicit framework, which unifies many prior approaches in a common framework. In the first step, we develop links between image warping and the level-set method, and we formulate the fundamental mathematics required for this hybrid implicit/explicit approach. In the second step, we incorporate the large-deformation models into these formulations, leading to a complete and elegant treatment of anatomical structure matching. In this latest approach, exact matching of anatomy is achieved by comparing the target to the warped source structure under the forward mapping and the source to the warped target structure under the backward mapping. Because anatomy is represented nonparametrically, a path is constructed linking the source to the target structure without prior knowledge of their point correspondence. The final point correspondence is constructed based on the linking path with the minimal energy. Intensity-similarity measures can be naturally incorporated in the same framework as landmark constraints by combining them in the gradient descent body forces. We illustrate the approach with two applications: (1) tensor-based morphometry of the corpus callosum in autistic children; and (2) matching cortical surfaces to measure the profile of cortical anatomic variation. In summary, the new mathematical techniques introduced here contribute fundamentally to the mapping of brain structure and its variation and provide a framework that unites feature and intensity-based image registration techniques.

摘要

本文提出了一种基于特征的脑图像变形新方法,通过使用隐式/显式混合框架,该框架将许多先前的方法统一在一个通用框架中。第一步,我们建立图像变形与水平集方法之间的联系,并阐述这种隐式/显式混合方法所需的基本数学原理。第二步,我们将大变形模型纳入这些公式中,从而实现对解剖结构匹配的完整而优雅的处理。在这种最新方法中,通过在正向映射下将目标与变形后的源结构进行比较,以及在反向映射下将源与变形后的目标结构进行比较,实现解剖结构的精确匹配。由于解剖结构是以非参数方式表示的,因此无需事先了解它们的点对应关系即可构建一条连接源结构和目标结构的路径。最终的点对应关系是基于具有最小能量的连接路径构建的。通过将强度相似性度量与梯度下降体力相结合,可以自然地将其纳入与地标约束相同的框架中。我们用两个应用来说明该方法:(1)自闭症儿童胼胝体的基于张量的形态测量;(2)匹配皮质表面以测量皮质解剖变异的轮廓。总之,这里介绍的新数学技术从根本上有助于脑结构及其变异的映射,并提供了一个统一基于特征和强度的图像配准技术的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验