Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Pflugers Arch. 2010 May;459(6):807-16. doi: 10.1007/s00424-009-0765-9. Epub 2010 Jan 16.
The endothelium can evoke relaxations (dilatations) of the underlying vascular smooth muscle, by releasing vasodilator substances. The best characterized endothelium-derived relaxing factor is nitric oxide (NO), which is synthesized by the endothelial isoform of nitric oxide synthase (eNOS). Endothelium-dependent relaxations involve both pertussis-toxin-sensitive G(i) (e.g., responses to serotonin, sphingosine 1-phosphate, alpha(2)-adrenergic agonists, and thrombin) and pertussis-toxin-insensitive G(q) (e.g., adenosine diphosphate and bradykinin) coupling proteins. eNOS undergoes a complex pattern of intracellular regulation, including post-translational modifications involving enzyme acylation and phosphorylation. eNOS is reversibly targeted to signal-transducing plasmalemmal caveolae where the enzyme interacts with a number of regulatory proteins, many of which are modified in cardiovascular disease states. The release of nitric oxide by the endothelial cell can be up- (e.g., by estrogens, exercise, and dietary factors) and down-regulated (e.g. oxidative stress, smoking, and oxidized low-density lipoproteins). It is reduced in the course of vascular disease (e.g., diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis-toxin-sensitive pathway for NO release which favors vasospasm, thrombosis, penetration of macrophages, cellular growth, and the inflammatory reaction leading to atherosclerosis. The unraveling of the complex interaction of the pathways regulating the presence and the activity of eNOS will enhance the understanding of the perturbations in endothelium-dependent signaling that are seen in cardiovascular disease states, and may lead to the identification of novel targets for therapeutic intervention.
内皮细胞可以通过释放血管舒张物质来引起血管平滑肌的舒张(扩张)。最具特征性的内皮衍生舒张因子是一氧化氮(NO),它是由内皮型一氧化氮合酶(eNOS)合成的。内皮依赖性舒张涉及百日咳毒素敏感的 G(i)(例如,对 5-羟色胺、鞘氨醇 1-磷酸、α(2)-肾上腺素能激动剂和凝血酶的反应)和百日咳毒素不敏感的 G(q)(例如,二磷酸腺苷和缓激肽)偶联蛋白。eNOS 经历了复杂的细胞内调节模式,包括涉及酶酰化和磷酸化的翻译后修饰。eNOS 可逆地靶向信号转导质膜 caveolae,在那里酶与许多调节蛋白相互作用,其中许多在心血管疾病状态下发生修饰。内皮细胞释放的一氧化氮可以被上调(例如,雌激素、运动和饮食因素)和下调(例如,氧化应激、吸烟和氧化低密度脂蛋白)。在血管疾病过程中,它会减少(例如,糖尿病和高血压)。被再生内皮细胞覆盖的动脉(例如,在血管成形术后)选择性地失去了释放一氧化氮的百日咳毒素敏感途径,这有利于血管痉挛、血栓形成、巨噬细胞渗透、细胞生长和导致动脉粥样硬化的炎症反应。阐明调节 eNOS 存在和活性的途径的复杂相互作用将增强对心血管疾病状态下内皮依赖性信号转导扰动的理解,并可能导致鉴定出治疗干预的新靶点。