Suppr超能文献

细胞信号转导与一氧化氮生成。

Cellular signaling and NO production.

机构信息

Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Pflugers Arch. 2010 May;459(6):807-16. doi: 10.1007/s00424-009-0765-9. Epub 2010 Jan 16.

Abstract

The endothelium can evoke relaxations (dilatations) of the underlying vascular smooth muscle, by releasing vasodilator substances. The best characterized endothelium-derived relaxing factor is nitric oxide (NO), which is synthesized by the endothelial isoform of nitric oxide synthase (eNOS). Endothelium-dependent relaxations involve both pertussis-toxin-sensitive G(i) (e.g., responses to serotonin, sphingosine 1-phosphate, alpha(2)-adrenergic agonists, and thrombin) and pertussis-toxin-insensitive G(q) (e.g., adenosine diphosphate and bradykinin) coupling proteins. eNOS undergoes a complex pattern of intracellular regulation, including post-translational modifications involving enzyme acylation and phosphorylation. eNOS is reversibly targeted to signal-transducing plasmalemmal caveolae where the enzyme interacts with a number of regulatory proteins, many of which are modified in cardiovascular disease states. The release of nitric oxide by the endothelial cell can be up- (e.g., by estrogens, exercise, and dietary factors) and down-regulated (e.g. oxidative stress, smoking, and oxidized low-density lipoproteins). It is reduced in the course of vascular disease (e.g., diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis-toxin-sensitive pathway for NO release which favors vasospasm, thrombosis, penetration of macrophages, cellular growth, and the inflammatory reaction leading to atherosclerosis. The unraveling of the complex interaction of the pathways regulating the presence and the activity of eNOS will enhance the understanding of the perturbations in endothelium-dependent signaling that are seen in cardiovascular disease states, and may lead to the identification of novel targets for therapeutic intervention.

摘要

内皮细胞可以通过释放血管舒张物质来引起血管平滑肌的舒张(扩张)。最具特征性的内皮衍生舒张因子是一氧化氮(NO),它是由内皮型一氧化氮合酶(eNOS)合成的。内皮依赖性舒张涉及百日咳毒素敏感的 G(i)(例如,对 5-羟色胺、鞘氨醇 1-磷酸、α(2)-肾上腺素能激动剂和凝血酶的反应)和百日咳毒素不敏感的 G(q)(例如,二磷酸腺苷和缓激肽)偶联蛋白。eNOS 经历了复杂的细胞内调节模式,包括涉及酶酰化和磷酸化的翻译后修饰。eNOS 可逆地靶向信号转导质膜 caveolae,在那里酶与许多调节蛋白相互作用,其中许多在心血管疾病状态下发生修饰。内皮细胞释放的一氧化氮可以被上调(例如,雌激素、运动和饮食因素)和下调(例如,氧化应激、吸烟和氧化低密度脂蛋白)。在血管疾病过程中,它会减少(例如,糖尿病和高血压)。被再生内皮细胞覆盖的动脉(例如,在血管成形术后)选择性地失去了释放一氧化氮的百日咳毒素敏感途径,这有利于血管痉挛、血栓形成、巨噬细胞渗透、细胞生长和导致动脉粥样硬化的炎症反应。阐明调节 eNOS 存在和活性的途径的复杂相互作用将增强对心血管疾病状态下内皮依赖性信号转导扰动的理解,并可能导致鉴定出治疗干预的新靶点。

相似文献

1
Cellular signaling and NO production.
Pflugers Arch. 2010 May;459(6):807-16. doi: 10.1007/s00424-009-0765-9. Epub 2010 Jan 16.
2
Endothelial dysfunction and vascular disease - a 30th anniversary update.
Acta Physiol (Oxf). 2017 Jan;219(1):22-96. doi: 10.1111/apha.12646. Epub 2016 Jan 25.
3
Regeneration of the endothelium in vascular injury.
Cardiovasc Drugs Ther. 2010 Aug;24(4):299-303. doi: 10.1007/s10557-010-6257-5.
4
Endothelial dysfunction and vascular disease.
Acta Physiol (Oxf). 2009 Jun;196(2):193-222. doi: 10.1111/j.1748-1716.2009.01964.x. Epub 2009 Feb 10.
5
Endothelium-derived nitric oxide and vascular physiology and pathology.
Cell Mol Life Sci. 1999 Jul;55(8-9):1078-87. doi: 10.1007/s000180050358.
6
Targeting and translocation of endothelial nitric oxide synthase.
Braz J Med Biol Res. 1999 Nov;32(11):1361-6. doi: 10.1590/s0100-879x1999001100006.
7
Endothelial dysfunction and vascular disease.
Verh K Acad Geneeskd Belg. 1998;60(3):251-66.
8
A role for endoglin in coupling eNOS activity and regulating vascular tone revealed in hereditary hemorrhagic telangiectasia.
Circ Res. 2005 Apr 1;96(6):684-92. doi: 10.1161/01.RES.0000159936.38601.22. Epub 2005 Feb 17.
9
G proteins and endothelium-dependent relaxations.
J Vasc Res. 1997 May-Jun;34(3):175-85. doi: 10.1159/000159221.

引用本文的文献

1
Research Progress on the Mechanism of Action of Food-Derived ACE-Inhibitory Peptides.
Life (Basel). 2025 Aug 1;15(8):1219. doi: 10.3390/life15081219.
5
Vasodilatory Effect of -Butanol Extract from L. and Its Mechanism.
Plants (Basel). 2025 Apr 1;14(7):1095. doi: 10.3390/plants14071095.
6
Harnessing Gasotransmitters to Combat Age-Related Oxidative Stress in Smooth Muscle and Endothelial Cells.
Pharmaceuticals (Basel). 2025 Feb 27;18(3):344. doi: 10.3390/ph18030344.
9
Redox Chemistry: Implications for Necrotizing Enterocolitis.
Int J Mol Sci. 2024 Aug 1;25(15):8416. doi: 10.3390/ijms25158416.

本文引用的文献

1
Activation and signaling by the AMP-activated protein kinase in endothelial cells.
Circ Res. 2009 Jul 17;105(2):114-27. doi: 10.1161/CIRCRESAHA.109.201590.
2
How We Learned to Say NO.
Arterioscler Thromb Vasc Biol. 2009 Aug;29(8):1156-60. doi: 10.1161/ATVBAHA.109.190215.
3
EDHF: an update.
Clin Sci (Lond). 2009 Jul 16;117(4):139-55. doi: 10.1042/CS20090096.
5
Endothelial dysfunction and vascular disease.
Acta Physiol (Oxf). 2009 Jun;196(2):193-222. doi: 10.1111/j.1748-1716.2009.01964.x. Epub 2009 Feb 10.
6
Reactive oxygen species and the control of vascular function.
Am J Physiol Heart Circ Physiol. 2009 Mar;296(3):H539-49. doi: 10.1152/ajpheart.01167.2008. Epub 2009 Jan 16.
7
AMP-activated protein kinase functionally phosphorylates endothelial nitric oxide synthase Ser633.
Circ Res. 2009 Feb 27;104(4):496-505. doi: 10.1161/CIRCRESAHA.108.187567. Epub 2009 Jan 8.
8
Vascular protection by tetrahydrobiopterin: progress and therapeutic prospects.
Trends Pharmacol Sci. 2009 Jan;30(1):48-54. doi: 10.1016/j.tips.2008.10.003. Epub 2008 Nov 29.
9
Endothelium-dependent contractions: when a good guy turns bad!
J Physiol. 2008 Nov 15;586(22):5295-304. doi: 10.1113/jphysiol.2008.161430. Epub 2008 Sep 25.
10
Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities.
Antioxid Redox Signal. 2008 Oct;10(10):1713-65. doi: 10.1089/ars.2008.2027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验