Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
J Comput Chem. 2010 Jun;31(8):1707-14. doi: 10.1002/jcc.21458.
Quantum chemical cluster models of enzyme active sites are today an important and powerful tool in the study of various aspects of enzymatic reactivity. This methodology has been applied to a wide spectrum of reactions and many important mechanistic problems have been solved. Herein, we report a systematic study of the reaction mechanism of the histone lysine methyltransferase (HKMT) SET7/9 enzyme, which catalyzes the methylation of the N-terminal histone tail of the chromatin structure. In this study, HKMT SET7/9 serves as a representative case to examine the modeling approach for the important class of methyl transfer enzymes. Active site models of different sizes are used to evaluate the methodology. In particular, the dependence of the calculated energies on the model size, the influence of the dielectric medium, and the particular choice of the dielectric constant are discussed. In addition, we examine the validity of some technical aspects, such as geometry optimization in solvent or with a large basis set, and the use of different density functional methods.
酶活性位点的量子化学团簇模型是研究酶反应性各个方面的重要和强大工具。这种方法已经应用于广泛的反应中,并且解决了许多重要的机理问题。在这里,我们报告了组蛋白赖氨酸甲基转移酶(HKMT)SET7/9 酶反应机制的系统研究,该酶催化染色质结构中 N-末端组蛋白尾巴的甲基化。在本研究中,HKMT SET7/9 作为一个代表案例,用于检验对于重要的甲基转移酶类的建模方法。使用不同大小的活性位点模型来评估方法。特别是,讨论了计算能量对模型大小的依赖性、介电介质的影响以及介电常数的特殊选择。此外,我们还检查了一些技术方面的有效性,例如在溶剂中或使用大基组进行几何优化,以及使用不同密度泛函方法。