Suppr超能文献

非保守流场的稳健变分图像分割。

A nonconservative flow field for robust variational image segmentation.

机构信息

Vision and ResearchLaboratory, Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.

出版信息

IEEE Trans Image Process. 2010 Feb;19(2):478-90. doi: 10.1109/TIP.2009.2033983.

Abstract

We introduce a robust image segmentation method based on a variational formulation using edge flow vectors. We demonstrate the nonconservative nature of this flow field, a feature that helps in a better segmentation of objects with concavities. A multiscale version of this method is developed and is shown to improve the localization of the object boundaries. We compare and contrast the proposed method with well known state-of-the-art methods. Detailed experimental results are provided on both synthetic and natural images that demonstrate that the proposed approach is quite competitive.

摘要

我们提出了一种基于变分公式的稳健图像分割方法,使用边缘流向量。我们证明了这个流场的非保守性质,这一特性有助于更好地分割具有凹陷的物体。该方法的多尺度版本得到了开发,并被证明可以改善物体边界的定位。我们将所提出的方法与著名的最先进的方法进行了比较和对比。在合成和自然图像上提供了详细的实验结果,表明所提出的方法具有很强的竞争力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验