Bach Cuadra M, De Craene M, Duay V, Macq B, Pollo C, Thiran J-Ph
Signal Processing Institute (ITS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Comput Methods Programs Biomed. 2006 Dec;84(2-3):66-75. doi: 10.1016/j.cmpb.2006.08.003. Epub 2006 Sep 18.
Atlas registration is a recognized paradigm for the automatic segmentation of normal MR brain images. Unfortunately, atlas-based segmentation has been of limited use in presence of large space-occupying lesions. In fact, brain deformations induced by such lesions are added to normal anatomical variability and they may dramatically shift and deform anatomically or functionally important brain structures. In this work, we chose to focus on the problem of inter-subject registration of MR images with large tumors, inducing a significant shift of surrounding anatomical structures. First, a brief survey of the existing methods that have been proposed to deal with this problem is presented. This introduces the discussion about the requirements and desirable properties that we consider necessary to be fulfilled by a registration method in this context: To have a dense and smooth deformation field and a model of lesion growth, to model different deformability for some structures, to introduce more prior knowledge, and to use voxel-based features with a similarity measure robust to intensity differences. In a second part of this work, we propose a new approach that overcomes some of the main limitations of the existing techniques while complying with most of the desired requirements above. Our algorithm combines the mathematical framework for computing a variational flow proposed by Hermosillo et al. [G. Hermosillo, C. Chefd'Hotel, O. Faugeras, A variational approach to multi-modal image matching, Tech. Rep., INRIA (February 2001).] with the radial lesion growth pattern presented by Bach et al. [M. Bach Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J.-G. Villemure, J.-Ph. Thiran, Atlas-based segmentation of pathological MR brain images using a model of lesion growth, IEEE Trans. Med. Imag. 23 (10) (2004) 1301-1314.]. Results on patients with a meningioma are visually assessed and compared to those obtained with the most similar method from the state-of-the-art.
图谱配准是正常脑部磁共振图像自动分割的一种公认范式。不幸的是,基于图谱的分割在存在大的占位性病变时用途有限。事实上,此类病变引起的脑部变形叠加在正常解剖变异之上,可能会显著地使解剖学或功能上重要的脑结构发生移位和变形。在这项工作中,我们选择聚焦于具有大肿瘤的磁共振图像的受试者间配准问题,该问题会导致周围解剖结构发生显著移位。首先,对已提出的用于处理此问题的现有方法进行简要综述。这引发了关于我们认为在此背景下配准方法必须满足的要求和理想特性的讨论:要有一个密集且平滑的变形场以及病变生长模型,对某些结构的不同可变形性进行建模,引入更多先验知识,并使用基于体素的特征以及对强度差异具有鲁棒性的相似性度量。在这项工作的第二部分,我们提出了一种新方法,该方法克服了现有技术的一些主要局限性,同时符合上述大多数期望要求。我们的算法将Hermosillo等人[G. Hermosillo, C. Chefd'Hotel, O. Faugeras,《多模态图像匹配的变分方法》,技术报告,法国国家信息与自动化研究所(2001年2月)]提出的用于计算变分流的数学框架与Bach等人[M. Bach Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J.-G. Villemure, J.-Ph. Thiran,《使用病变生长模型对病理性脑部磁共振图像进行基于图谱的分割》,《IEEE医学影像学汇刊》23(10)(2004)1301 - 1314]提出的径向病变生长模式相结合。对患有脑膜瘤的患者的结果进行视觉评估,并与现有最相似方法的结果进行比较。