Suppr超能文献

类黄酮植物抗毒素依赖型对炭疽病叶枯病的抗性需要高粱中功能正常的黄种皮 1。

Flavonoid phytoalexin-dependent resistance to anthracnose leaf blight requires a functional yellow seed1 in Sorghum bicolor.

机构信息

Department of Crop and Soil Sciences and Plant Biology Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

Genetics. 2010 Apr;184(4):915-26. doi: 10.1534/genetics.109.111831. Epub 2010 Jan 18.

Abstract

In Sorghum bicolor, a group of phytoalexins are induced at the site of infection by Colletotrichum sublineolum, the anthracnose fungus. These compounds, classified as 3-deoxyanthocyanidins, have structural similarities to the precursors of phlobaphenes. Sorghum yellow seed1 (y1) encodes a MYB transcription factor that regulates phlobaphene biosynthesis. Using the candystripe1 transposon mutagenesis system in sorghum, we have isolated functional revertants as well as loss-of-function alleles of y1. These near-isogenic lines of sorghum show that, compared to functionally revertant alleles, loss of y1 lines do not accumulate phlobaphenes. Molecular characterization of two null y1 alleles shows a partial internal deletion in the y1 sequence. These null alleles, designated as y1-ww1 and y1-ww4, do not accumulate 3-deoxyanthocyanidins when challenged with the nonpathogenic fungus Cochliobolus heterostrophus. Further, as compared to the wild-type allele, both y1-ww1 and y1-ww4 show greater susceptibility to the pathogenic fungus C. sublineolum. In fungal-inoculated wild-type seedlings, y1 and its target flavonoid structural genes are coordinately expressed. However, in y1-ww1 and y1-ww4 seedlings where y1 is not expressed, steady-state transcripts of its target genes could not be detected. Cosegregation analysis showed that the functional y1 gene is genetically linked with resistance to C. sublineolum. Overall results demonstrate that the accumulation of sorghum 3-deoxyanthocyanidin phytoalexins and resistance to C. sublineolum in sorghum require a functional y1 gene.

摘要

在高粱中,一组植物抗毒素被炭疽菌(Colletotrichum sublineolum)诱导产生,炭疽菌是一种炭疽病真菌。这些化合物被归类为 3-脱氧花色苷,与叶色酚前体具有结构相似性。高粱黄种皮 1(y1)编码一个 MYB 转录因子,该因子调节叶色酚生物合成。我们利用高粱中的 candystripe1 转座子诱变系统,分离出 y1 的功能回复突变体和功能丧失等位基因。这些近等基因系高粱表明,与功能回复突变体等位基因相比,y1 缺失系不会积累叶色酚。对两个 y1 无功能等位基因的分子特征分析表明,y1 序列发生了部分内部缺失。这些无功能等位基因被命名为 y1-ww1 和 y1-ww4,当受到非致病性真菌 Cochliobolus heterostrophus 的挑战时,它们不会积累 3-脱氧花色苷。此外,与野生型等位基因相比,y1-ww1 和 y1-ww4 对致病性真菌 C. sublineolum 的敏感性更高。在接种真菌的野生型幼苗中,y1 及其靶黄酮结构基因协同表达。然而,在 y1-ww1 和 y1-ww4 幼苗中,由于 y1 不表达,其靶基因的稳定态转录本无法检测到。共分离分析表明,功能正常的 y1 基因与对 C. sublineolum 的抗性在遗传上是连锁的。总体结果表明,高粱 3-脱氧花色苷植物抗毒素的积累和对 C. sublineolum 的抗性需要一个功能正常的 y1 基因。

相似文献

1
Flavonoid phytoalexin-dependent resistance to anthracnose leaf blight requires a functional yellow seed1 in Sorghum bicolor.
Genetics. 2010 Apr;184(4):915-26. doi: 10.1534/genetics.109.111831. Epub 2010 Jan 18.
3
The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum.
Plant Biotechnol J. 2017 Nov;15(11):1387-1396. doi: 10.1111/pbi.12723. Epub 2017 Apr 20.
4
Sorghum 3-Deoxyanthocyanidin Flavonoids Confer Resistance against Corn Leaf Aphid.
J Chem Ecol. 2019 Jun;45(5-6):502-514. doi: 10.1007/s10886-019-01062-8. Epub 2019 Mar 26.
6
Molecular dissection of the pathogen-inducible 3-deoxyanthocyanidin biosynthesis pathway in sorghum.
Plant Cell Physiol. 2010 Jul;51(7):1173-85. doi: 10.1093/pcp/pcq080. Epub 2010 Jun 6.
9
Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum.
J Exp Bot. 2010 Feb;61(4):983-94. doi: 10.1093/jxb/erp364. Epub 2009 Dec 10.
10
A stilbene synthase gene (SbSTS1) is involved in host and nonhost defense responses in sorghum.
Plant Physiol. 2005 May;138(1):393-401. doi: 10.1104/pp.105.059337. Epub 2005 Apr 8.

引用本文的文献

2
Loss of Pleiotropic Regulatory Functions in , the Sorghum Ortholog of Arabidopsis Master Regulator .
Plant Direct. 2025 Mar 12;9(3):e70055. doi: 10.1002/pld3.70055. eCollection 2025 Mar.
3
UV-induced reactive oxygen species and transcriptional control of 3-deoxyanthocyanidin biosynthesis in black sorghum pericarp.
Front Plant Sci. 2024 Oct 7;15:1451215. doi: 10.3389/fpls.2024.1451215. eCollection 2024.
4
Major impacts of widespread structural variation on sorghum.
Genome Res. 2024 Mar 20;34(2):286-299. doi: 10.1101/gr.278396.123.
5
Recent advancements in multifaceted roles of flavonoids in plant-rhizomicrobiome interactions.
Front Plant Sci. 2024 Jan 5;14:1297706. doi: 10.3389/fpls.2023.1297706. eCollection 2023.
7
GWAS of grain color and tannin content in Chinese sorghum based on whole-genome sequencing.
Theor Appl Genet. 2023 Mar 23;136(4):77. doi: 10.1007/s00122-023-04307-z.
8
Linkage QTL Mapping and Genome-Wide Association Study on Resistance in Chickpea to .
Front Genet. 2022 Aug 15;13:945787. doi: 10.3389/fgene.2022.945787. eCollection 2022.
10
Identification of QTLs Controlling Resistance to Anthracnose Disease in Water Yam ().
Genes (Basel). 2022 Feb 14;13(2):347. doi: 10.3390/genes13020347.

本文引用的文献

3
Infection biology and defence responses in sorghum against Colletotrichum sublineolum.
J Appl Microbiol. 2009 Aug;107(2):404-15. doi: 10.1111/j.1365-2672.2009.04234.x. Epub 2009 Mar 19.
4
Progressive loss of DNA methylation releases epigenetic gene silencing from a tandemly repeated maize Myb gene.
Genetics. 2009 Jan;181(1):81-91. doi: 10.1534/genetics.108.097170. Epub 2008 Nov 10.
5
Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress.
Science. 1990 Jun 29;248(4963):1637-9. doi: 10.1126/science.248.4963.1637.
7
Regulatory variability of camalexin biosynthesis.
J Plant Physiol. 2007 May;164(5):636-44. doi: 10.1016/j.jplph.2006.04.012.
9
Phytoalexin synthesis by the sorghum mesocotyl in response to infection by pathogenic and nonpathogenic fungi.
Proc Natl Acad Sci U S A. 1987 Aug;84(16):5520-4. doi: 10.1073/pnas.84.16.5520.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验