School of Environmental & Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.
New Phytol. 2010 Mar;185(4):931-43. doi: 10.1111/j.1469-8137.2009.03136.x. Epub 2010 Jan 15.
*Transfer cells (TCs) trans-differentiate by developing extensive wall ingrowths that facilitate enhanced plasma membrane transport of nutrients. Signal(s) and signalling cascades responsible for initiating this trans-differentiation event are poorly understood. We tested the hypothesis that ethylene functions as a key inductive signal for wall ingrowth formation in epidermal cells of Vicia faba cotyledons. *Scanning electron microscopy of epidermal cells monitored their propensity for wall ingrowth formation. Spatial and temporal expression profiles of ethylene biosynthetic enzymes and key elements of ethylene signalling cascades (ethylene insensitive 3 (EIN3) and ethylene response factors (ERFs)) were determined. *Wall-ingrowth formation responded positively to manipulation of ethylene biosynthesis and perception. It was preceded by a cell-specific burst in ethylene biosynthesis accompanied by a co-localized post-translational up-regulation of VfEIN3-1 and differential expression of three VfERF genes. Blocking ethylene production arrested ongoing wall ingrowth development. Wound-induced ethylene in pod walls and seed coats caused an in planta activation of ethylene biosynthetic genes in adaxial epidermal cells that coincidentally formed wall ingrowths. *A cell-specific burst of ethylene biosynthesis functions as an inductive signal initiating and sustaining trans-differentiation to a TC morphology in vitro. These events are reproduced for developing V. faba seeds in planta.
*转移细胞(TCs)通过发育广泛的细胞壁内陷来进行转分化,从而促进营养物质的质膜运输增强。负责启动这种转分化事件的信号和信号级联反应知之甚少。我们测试了这样一个假设,即乙烯作为芸豆子叶表皮细胞细胞壁内陷形成的关键诱导信号。*通过扫描电子显微镜监测表皮细胞的细胞壁内陷形成倾向。确定了乙烯生物合成酶和乙烯信号转导级联(乙烯不敏感 3(EIN3)和乙烯反应因子(ERFs))的关键元件的时空表达谱。*细胞壁内陷形成对乙烯生物合成和感知的操纵呈阳性反应。它之前是伴随着 VfEIN3-1 的翻译后上调和三个 VfERF 基因的差异表达的细胞特异性乙烯生物合成爆发。阻止乙烯的产生会阻止正在进行的细胞壁内陷发育。荚壁和种皮中的伤诱导乙烯导致在与形成细胞壁内陷的近轴表皮细胞中体内激活乙烯生物合成基因。*细胞特异性乙烯生物合成爆发作为诱导信号,启动并维持体外向 TC 形态的转分化。这些事件在体内发育的芸豆种子中得到重现。