Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt.
Math Biosci. 2010 May;225(1):11-7. doi: 10.1016/j.mbs.2010.01.003. Epub 2010 Jan 18.
This paper presents the concentration distribution around a growing nitrogen gas bubble in the blood and other tissues of divers who surface too quickly, when the ambient pressure through the decompression process is variable and constant. This effort is a modification of Sirinivasan et al. model (1999) [9]. The mathematical model is solved analytically to find the growth rate of a gas bubble in a tissue after decompression in the ambient pressure. Moreover, the concentration distribution around the growing bubble is introduced. The growth process is affected by ascent rate alpha (t), tissue diffusivity D(T), initial concentration difference DeltaC(0), surface tension sigma and void fraction varphi(0).
本文介绍了在潜水员从快速减压的环境中上升时,血液和其他组织中氮气气泡生长时周围浓度的分布情况。本研究对 Sirinivasan 等人的模型(1999 年)[9]进行了改进。通过解析数学模型,我们找到了在环境压力下减压后组织中气泡生长的增长率。此外,还介绍了生长气泡周围的浓度分布。气泡的生长过程受到上升速度α(t)、组织扩散率 D(T)、初始浓度差ΔC(0)、表面张力σ和空泡分数φ(0)的影响。