Suppr超能文献

Pannexin1 和 pannexin3 的递呈、细胞表面动力学和细胞骨架相互作用。

Pannexin1 and pannexin3 delivery, cell surface dynamics, and cytoskeletal interactions.

机构信息

Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada.

出版信息

J Biol Chem. 2010 Mar 19;285(12):9147-60. doi: 10.1074/jbc.M109.082008. Epub 2010 Jan 10.

Abstract

Pannexins (Panx) are a class of integral membrane proteins that have been proposed to exhibit characteristics similar to those of connexin family members. In this study, we utilized Cx43-positive BICR-M1R(k) cells to stably express Panx1, Panx3, or Panx1-green fluorescent protein (GFP) to assess their trafficking, cell surface dynamics, and interplay with the cytoskeletal network. Expression of a Sar1 dominant negative mutant revealed that endoplasmic reticulum to Golgi transport of Panx1 and Panx3 was mediated via COPII-dependent vesicles. Distinct from Cx43-GFP, fluorescence recovery after photobleaching studies revealed that both Panx1-GFP and Panx3-GFP remained highly mobile at the cell surface. Unlike Cx43, Panx1-GFP exhibited no detectable interrelationship with microtubules. Conversely, cytochalasin B-induced disruption of microfilaments caused a severe loss of cell surface Panx1-GFP, a reduction in the recoverable fraction of Panx1-GFP that remained at the cell surface, and a decrease in Panx1-GFP vesicular transport. Furthermore, co-immunoprecipitation and co-sedimentation assays revealed actin as a novel binding partner of Panx1. Collectively, we conclude that although Panx1 and Panx3 share a common endoplasmic reticulum to Golgi secretory pathway to Cx43, their ultimate cell surface residency appears to be independent of cell contacts and the need for intact microtubules. Importantly, Panx1 has an interaction with actin microfilaments that regulates its cell surface localization and mobility.

摘要

缝隙连接蛋白(Panx)是一类整合膜蛋白,被认为具有类似于连接蛋白家族成员的特征。在这项研究中,我们利用 Cx43 阳性的 BICR-M1R(k) 细胞稳定表达 Panx1、Panx3 或 Panx1-绿色荧光蛋白(GFP),以评估它们的转运、细胞表面动力学以及与细胞骨架网络的相互作用。Sar1 显性失活突变体的表达表明,Panx1 和 Panx3 的内质网到高尔基体的运输是通过 COPII 依赖性囊泡介导的。与 Cx43-GFP 不同,光漂白后荧光恢复研究表明,Panx1-GFP 和 Panx3-GFP 在细胞表面均保持高度流动性。与 Cx43 不同,Panx1-GFP 与微管没有可检测到的相互关系。相反,细胞松弛素 B 诱导的微丝破坏导致细胞表面 Panx1-GFP 严重丢失,留在细胞表面的 Panx1-GFP 可恢复部分减少,Panx1-GFP 囊泡运输减少。此外,共免疫沉淀和共沉淀测定显示肌动蛋白是 Panx1 的一种新的结合伴侣。总的来说,我们得出结论,尽管 Panx1 和 Panx3 与 Cx43 共享一个共同的内质网到高尔基体分泌途径,但它们最终的细胞表面驻留似乎独立于细胞接触和完整的微管。重要的是,Panx1 与肌动蛋白微丝相互作用,调节其细胞表面定位和流动性。

相似文献

1
Pannexin1 and pannexin3 delivery, cell surface dynamics, and cytoskeletal interactions.
J Biol Chem. 2010 Mar 19;285(12):9147-60. doi: 10.1074/jbc.M109.082008. Epub 2010 Jan 10.
2
Mechanisms of Cx43 and Cx26 transport to the plasma membrane and gap junction regeneration.
J Cell Sci. 2005 Oct 1;118(Pt 19):4451-62. doi: 10.1242/jcs.02569. Epub 2005 Sep 13.
3
Role of cytoskeletal elements in the recruitment of Cx43-GFP and Cx26-YFP into gap junctions.
Cell Commun Adhes. 2001;8(4-6):231-6. doi: 10.3109/15419060109080729.
5
Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation.
J Cell Sci. 2010 Apr 15;123(Pt 8):1363-72. doi: 10.1242/jcs.056093. Epub 2010 Mar 23.
6
Differential effects of pannexins on noise-induced hearing loss.
Biochem J. 2016 Dec 15;473(24):4665-4680. doi: 10.1042/BCJ20160668. Epub 2016 Oct 26.
7
Pathways regulating the trafficking and turnover of pannexin1 protein and the role of the C-terminal domain.
J Biol Chem. 2011 Aug 5;286(31):27639-53. doi: 10.1074/jbc.M111.260711. Epub 2011 Jun 9.
8
Actin cytoskeleton rest stops regulate anterograde traffic of connexin 43 vesicles to the plasma membrane.
Circ Res. 2012 Mar 30;110(7):978-89. doi: 10.1161/CIRCRESAHA.111.257964. Epub 2012 Feb 9.
9
Glycosylation regulates pannexin intermixing and cellular localization.
Mol Biol Cell. 2009 Oct;20(20):4313-23. doi: 10.1091/mbc.e09-01-0067. Epub 2009 Aug 19.

引用本文的文献

4
Novel Potential Therapeutic Targets in Autosomal Dominant Polycystic Kidney Disease from the Perspective of Cell Polarity and Fibrosis.
Biomol Ther (Seoul). 2024 May 1;32(3):291-300. doi: 10.4062/biomolther.2023.207. Epub 2024 Apr 9.
5
Targeting Pannexin-1 Channels: Addressing the 'Gap' in Chronic Pain.
CNS Drugs. 2024 Feb;38(2):77-91. doi: 10.1007/s40263-024-01061-8. Epub 2024 Feb 14.
7
Mitochondrial pannexin1 controls cardiac sensitivity to ischaemia/reperfusion injury.
Cardiovasc Res. 2023 Oct 24;119(13):2342-2354. doi: 10.1093/cvr/cvad120.
8
Pannexin1 channels in the liver: an open enemy.
Front Cell Dev Biol. 2023 Jul 10;11:1220405. doi: 10.3389/fcell.2023.1220405. eCollection 2023.

本文引用的文献

1
Glycosylation regulates pannexin intermixing and cellular localization.
Mol Biol Cell. 2009 Oct;20(20):4313-23. doi: 10.1091/mbc.e09-01-0067. Epub 2009 Aug 19.
2
Collective cell migration.
Annu Rev Cell Dev Biol. 2009;25:407-29. doi: 10.1146/annurev.cellbio.042308.113231.
3
Gap junction turnover is achieved by the internalization of small endocytic double-membrane vesicles.
Mol Biol Cell. 2009 Jul;20(14):3342-52. doi: 10.1091/mbc.e09-04-0288. Epub 2009 May 20.
4
Sar1-GTPase-dependent ER exit of KATP channels revealed by a mutation causing congenital hyperinsulinism.
Hum Mol Genet. 2009 Jul 1;18(13):2400-13. doi: 10.1093/hmg/ddp179. Epub 2009 Apr 8.
5
Cx43 has distinct mobility within plasma-membrane domains, indicative of progressive formation of gap-junction plaques.
J Cell Sci. 2009 Feb 15;122(Pt 4):554-62. doi: 10.1242/jcs.036970. Epub 2009 Jan 27.
6
Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus.
Science. 2008 Dec 5;322(5907):1555-9. doi: 10.1126/science.1165209.
7
Pharmacological characterization of pannexin-1 currents expressed in mammalian cells.
J Pharmacol Exp Ther. 2009 Feb;328(2):409-18. doi: 10.1124/jpet.108.146365. Epub 2008 Nov 20.
8
Diverse subcellular distribution profiles of pannexin 1 and pannexin 3.
Cell Commun Adhes. 2008 May;15(1):133-42. doi: 10.1080/15419060802014115.
9
Trafficking dynamics of glycosylated pannexin 1 proteins.
Cell Commun Adhes. 2008 May;15(1):119-32. doi: 10.1080/15419060802013885.
10
Connexin and pannexin mediated cell-cell communication.
Neuron Glia Biol. 2007 Aug;3(3):199-208. doi: 10.1017/S1740925X08000069.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验