Suppr超能文献

贝叶斯校正在病例对照研究中的暴露错误分类。

Bayesian adjustment for exposure misclassification in case-control studies.

机构信息

Department of Clinical Epidemiology and Biostatistics, McMaster University, Canada.

出版信息

Stat Med. 2010 Apr 30;29(9):994-1003. doi: 10.1002/sim.3829. Epub 2010 Jan 19.

Abstract

Poor measurement of explanatory variables occurs frequently in observational studies. Error-prone observations may lead to biased estimation and loss of power in detecting the impact of explanatory variables on the response. We consider misclassified binary exposure in the context of case-control studies, assuming the availability of validation data to inform the magnitude of the misclassification. A Bayesian adjustment to correct the misclassification is investigated. Simulation studies show that the Bayesian method can have advantages over non-Bayesian counterparts, particularly in the face of a rare exposure, small validation sample sizes, and uncertainty about whether exposure misclassification is differential or non-differential. The method is illustrated via application to several real studies.

摘要

在观察性研究中,解释性变量的测量往往不准确。有错误的观测值可能导致对解释变量对响应的影响的估计有偏差和检测能力下降。我们在病例对照研究的背景下考虑错误分类的二元暴露,假设可以使用验证数据来告知错误分类的程度。研究了一种贝叶斯调整方法来纠正错误分类。模拟研究表明,贝叶斯方法相对于非贝叶斯方法可能具有优势,特别是在面临罕见暴露、验证样本量小以及不确定暴露错误分类是差异还是非差异的情况下。该方法通过应用于几个实际研究来说明。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验