Department of Physiology and Biophysics, Boston University School of Medicine, L-720, Boston, MA 02118, USA.
Am J Physiol Regul Integr Comp Physiol. 2010 Apr;298(4):R989-96. doi: 10.1152/ajpregu.00566.2009. Epub 2010 Jan 20.
Skeletal muscle, during periods of exertion, experiences several different fatigue-based changes in contractility, including reductions in force, velocity, power output, and energy usage. The fatigue-induced changes in contractility stem from many different factors, including alterations in the levels of metabolites, oxidative damage, and phosphorylation of the myosin regulatory light chain (RLC). Here, we measured the direct molecular effects of fatigue-like conditions on actomyosin's unloaded sliding velocity using the in vitro motility assay. We examined how changes in ATP, ADP, P(i), and pH affect the ability of the myosin to translocate actin and whether the effects of each individual molecular species are additive. We found that the primary causes of the reduction in unloaded sliding velocity are increased [ADP] and lowered pH and that the combined effects of the molecular species are nonadditive. Furthermore, since an increase in RLC phosphorylation is often associated with fatigue, we examined the differential effects of myosin RLC phosphorylation and fatigue on actin filament velocity. We found that phosphorylation of the RLC causes a 22% depression in sliding velocity. On the other hand, RLC phosphorylation ameliorates the slowing of velocity under fatigue-like conditions. We also found that phosphorylation of the myosin RLC increases actomyosin affinity for ADP, suggesting a kinetic role for RLC phosphorylation. Furthermore, we showed that ADP binding to skeletal muscle is load dependent, consistent with the existence of a load-dependent isomerization of the ADP bound state.
在用力期间,骨骼肌会经历几种不同的基于疲劳的收缩力变化,包括力、速度、功率输出和能量消耗的减少。收缩力的疲劳诱导变化源于许多不同的因素,包括代谢物水平的改变、氧化损伤和肌球蛋白调节轻链(RLC)的磷酸化。在这里,我们使用体外运动检测测量了类似于疲劳条件对肌球蛋白无负载滑动速度的直接分子影响。我们研究了 ATP、ADP、Pi 和 pH 的变化如何影响肌球蛋白在肌动蛋白上的易位能力,以及每种分子物种的影响是否是相加的。我们发现,无负载滑动速度降低的主要原因是 ADP 增加和 pH 降低,并且各分子物种的综合效应是非加性的。此外,由于肌球蛋白 RLC 磷酸化通常与疲劳有关,因此我们研究了肌球蛋白 RLC 磷酸化和疲劳对肌动蛋白丝速度的差异影响。我们发现 RLC 磷酸化导致滑动速度降低 22%。另一方面,RLC 磷酸化可改善类似疲劳条件下速度的减慢。我们还发现肌球蛋白 RLC 的磷酸化增加了肌球蛋白与 ADP 的亲和力,这表明 RLC 磷酸化具有动力学作用。此外,我们表明骨骼肌与 ADP 的结合是依赖于负载的,这与 ADP 结合状态的负载依赖性异构化的存在一致。