Vandenboom Rene
Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, Ontario, Canada.
Compr Physiol. 2016 Dec 6;7(1):171-212. doi: 10.1002/cphy.c150044.
The striated muscle sarcomere is a highly organized and complex enzymatic and structural organelle. Evolutionary pressures have played a vital role in determining the structure-function relationship of each protein within the sarcomere. A key part of this multimeric assembly is the light chain-binding domain (LCBD) of the myosin II motor molecule. This elongated "beam" functions as a biological lever, amplifying small interdomain movements within the myosin head into piconewton forces and nanometer displacements against the thin filament during the cross-bridge cycle. The LCBD contains two subunits known as the essential and regulatory myosin light chains (ELC and RLC, respectively). Isoformic differences in these respective species provide molecular diversity and, in addition, sites for phosphorylation of serine residues, a highly conserved feature of striated muscle systems. Work on permeabilized skeletal fibers and thick filament systems shows that the skeletal myosin light chain kinase catalyzed phosphorylation of the RLC alters the "interacting head motif" of myosin motor heads on the thick filament surface, with myriad consequences for muscle biology. At rest, structure-function changes may upregulate actomyosin ATPase activity of phosphorylated cross-bridges. During activation, these same changes may increase the Ca2+ sensitivity of force development to enhance force, work, and power output, outcomes known as "potentiation." Thus, although other mechanisms may contribute, RLC phosphorylation may represent a form of thick filament activation that provides a "molecular memory" of contraction. The clinical significance of these RLC phosphorylation mediated alterations to contractile performance of various striated muscle systems are just beginning to be understood. © 2017 American Physiological Society. Compr Physiol 7:171-212, 2017.
横纹肌肌节是一种高度组织化且复杂的酶促和结构细胞器。进化压力在决定肌节内每种蛋白质的结构 - 功能关系方面发挥了至关重要的作用。这种多聚体组装的一个关键部分是肌球蛋白II运动分子的轻链结合结构域(LCBD)。这个细长的“梁”起着生物杠杆的作用,在横桥循环过程中,将肌球蛋白头部内的小结构域间运动放大为皮牛顿力,并使其相对于细肌丝产生纳米级位移。LCBD包含两个亚基,分别称为必需肌球蛋白轻链和调节肌球蛋白轻链(分别为ELC和RLC)。这些各自种类中的同工型差异提供了分子多样性,此外,丝氨酸残基的磷酸化位点也是横纹肌系统的一个高度保守特征。对通透化骨骼肌纤维和粗肌丝系统的研究表明,骨骼肌肌球蛋白轻链激酶催化的RLC磷酸化改变了粗肌丝表面肌球蛋白运动头部的“相互作用头部基序”,对肌肉生物学产生了无数影响。在静息状态下,结构 - 功能变化可能会上调磷酸化横桥的肌动球蛋白ATP酶活性。在激活过程中,这些相同的变化可能会增加力产生的Ca2 +敏感性,以增强力、功和功率输出,这些结果被称为“增强作用 ”。因此,尽管可能还有其他机制起作用,但RLC磷酸化可能代表了一种粗肌丝激活形式,它提供了收缩的“分子记忆”。这些由RLC磷酸化介导的对各种横纹肌系统收缩性能改变的临床意义才刚刚开始被理解。©2017美国生理学会。综合生理学7:171 - 212,