Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813, USA.
J Neurosci. 2010 Jan 20;30(3):963-72. doi: 10.1523/JNEUROSCI.5045-09.2010.
Ibuprofen is a nonsteroidal anti-inflammatory drug widely used to relieve pain and inflammation in many disorders via inhibition of cyclooxygenases. Recently, we have demonstrated that ibuprofen inhibits intracellular signaling of RhoA and promotes significant axonal growth and functional recovery following spinal cord lesions in rodents. In addition, another study suggests that ibuprofen reduces generation of amyloid-beta42 peptide via inactivation of RhoA signaling, although it may also regulate amyloid-beta42 formation by direct inhibition of the gamma-secretase complex. The molecular mechanisms by which ibuprofen inhibits the RhoA signal in neurons, however, remain unclear. Here, we report that the transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) is essential for coupling ibuprofen to RhoA inhibition and subsequent neurite growth promotion in neurons. Ibuprofen activates PPARgamma in neuron-like PC12 and B104 cells. Activation of PPARgamma with traditional agonists mimics the RhoA-inhibiting properties of ibuprofen in PC12 cells and, like ibuprofen, promotes neurite elongation in primary cultured neurons exposed to axonal growth inhibitors. Protein knockdown with small interfering RNA specific for PPARgamma blocks RhoA suppression of PPARgamma agonists in PC12 cells. Moreover, the effect of ibuprofen on RhoA activity and neurite growth in neuronal cultures is prevented by selective PPARgamma inhibition. These findings support that PPARgamma plays an essential role in mediating the RhoA-inhibiting effect of ibuprofen. Elucidation of the novel molecular mechanisms linking ibuprofen to RhoA inhibition may provide additional therapeutic targets to the disorders characterized by RhoA activation, including spinal cord injuries and Alzheimer's disease.
布洛芬是一种非甾体抗炎药,通过抑制环氧化酶,广泛用于缓解多种疾病的疼痛和炎症。最近,我们已经证明布洛芬抑制了 RhoA 的细胞内信号传导,并促进了啮齿动物脊髓损伤后的明显轴突生长和功能恢复。此外,另一项研究表明,布洛芬通过失活 RhoA 信号来减少淀粉样蛋白β42 肽的生成,尽管它也可能通过直接抑制γ-分泌酶复合物来调节淀粉样蛋白β42 的形成。然而,布洛芬抑制神经元中 RhoA 信号的分子机制尚不清楚。在这里,我们报告过氧化物酶体增殖物激活受体γ(PPARγ)是将布洛芬与 RhoA 抑制和随后神经元中的突起生长促进相关联的关键转录因子。布洛芬在神经元样 PC12 和 B104 细胞中激活了 PPARγ。用传统激动剂激活 PPARγ模拟了布洛芬在 PC12 细胞中的 RhoA 抑制特性,并且与布洛芬一样,促进了暴露于轴突生长抑制剂的原代培养神经元中的突起伸长。针对 PPARγ 的小干扰 RNA 的蛋白敲低阻断了 PC12 细胞中 RhoA 对 PPARγ 激动剂的抑制作用。此外,选择性 PPARγ 抑制剂可阻止布洛芬对神经元培养物中 RhoA 活性和突起生长的影响。这些发现支持了 PPARγ 在介导布洛芬对 RhoA 的抑制作用中起着至关重要的作用。阐明将布洛芬与 RhoA 抑制联系起来的新分子机制可能为 RhoA 激活相关疾病(包括脊髓损伤和阿尔茨海默病)提供额外的治疗靶标。