Orthopedic Research Laboratories, Department of Orthopedic Surgery, Children's Hospital, Boston, MA 02115, USA.
N Engl J Med. 2010 Jan 21;362(3):206-16. doi: 10.1056/NEJMoa0900158.
Establishing the genetic basis of phenotypes such as skeletal dysplasia in model organisms can provide insights into biologic processes and their role in human disease.
We screened mutagenized mice and observed a neonatal lethal skeletal dysplasia with an autosomal recessive pattern of inheritance. Through genetic mapping and positional cloning, we identified the causative mutation.
Affected mice had a nonsense mutation in the thyroid hormone receptor interactor 11 gene (Trip11), which encodes the Golgi microtubule-associated protein 210 (GMAP-210); the affected mice lacked this protein. Golgi architecture was disturbed in multiple tissues, including cartilage. Skeletal development was severely impaired, with chondrocytes showing swelling and stress in the endoplasmic reticulum, abnormal cellular differentiation, and increased cell death. Golgi-mediated glycosylation events were altered in fibroblasts and chondrocytes lacking GMAP-210, and these chondrocytes had intracellular accumulation of perlecan, an extracellular matrix protein, but not of type II collagen or aggrecan, two other extracellular matrix proteins. The similarities between the skeletal and cellular phenotypes in these mice and those in patients with achondrogenesis type 1A, a neonatal lethal form of skeletal dysplasia in humans, suggested that achondrogenesis type 1A may be caused by GMAP-210 deficiency. Sequence analysis revealed loss-of-function mutations in the 10 unrelated patients with achondrogenesis type 1A whom we studied.
GMAP-210 is required for the efficient glycosylation and cellular transport of multiple proteins. The identification of a mutation affecting GMAP-210 in mice, and then in humans, as the cause of a lethal skeletal dysplasia underscores the value of screening for abnormal phenotypes in model organisms and identifying the causative mutations.
在模式生物中建立表型(如骨骼发育不良)的遗传基础可以深入了解生物学过程及其在人类疾病中的作用。
我们筛选了诱变小鼠,并观察到一种具有常染色体隐性遗传模式的新生儿致死性骨骼发育不良。通过遗传图谱和定位克隆,我们确定了致病突变。
受影响的小鼠在甲状腺激素受体相互作用蛋白 11 基因(Trip11)中存在无义突变,该基因编码高尔基微管相关蛋白 210(GMAP-210);受影响的小鼠缺乏这种蛋白质。高尔基结构在包括软骨在内的多种组织中受到干扰。骨骼发育严重受损,软骨细胞内质网肿胀和压力增加,细胞异常分化,细胞死亡增加。GMAP-210 缺乏的成纤维细胞和软骨细胞中,高尔基介导的糖基化事件发生改变,这些软骨细胞中,细胞外基质蛋白硫酸乙酰肝素蛋白聚糖(perlecan)在细胞内积累,但 II 型胶原和聚集蛋白聚糖(aggrecan)这两种其他细胞外基质蛋白则没有。这些小鼠的骨骼和细胞表型与人类中一种新生儿致死性骨骼发育不良——成骨不全症 1A 型的患者非常相似,提示成骨不全症 1A 型可能是由 GMAP-210 缺乏引起的。序列分析显示,我们研究的 10 名无关成骨不全症 1A 型患者均存在 GMAP-210 丧失功能突变。
GMAP-210 是多种蛋白质有效糖基化和细胞转运所必需的。在小鼠中发现影响 GMAP-210 的突变,然后在人类中发现该突变是一种致死性骨骼发育不良的原因,这突显了在模型生物中筛选异常表型并确定致病突变的价值。