Suppr超能文献

通过操纵途径调控提高链霉菌次级代谢产物的产量。

Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation.

机构信息

Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA.

出版信息

Appl Microbiol Biotechnol. 2010 Mar;86(1):19-25. doi: 10.1007/s00253-009-2428-3. Epub 2010 Jan 21.

Abstract

Titer improvement is a constant requirement in the fermentation industry. The traditional method of "random mutation and screening" has been very effective despite the considerable amount of time and resources it demands. Rational metabolic engineering, with the use of recombinant DNA technology, provides a novel, alternative strategy for titer improvement that complements the empirical method used in industry. Manipulation of the specific regulatory systems that govern secondary metabolite production is an important aspect of metabolic engineering that can efficiently improve fermentation titers. In this review, we use examples from Streptomyces secondary metabolism, the most prolific source of clinically used drugs, to demonstrate the power and utility of exploiting natural regulatory networks, in particular pathway-specific regulators, for titer improvement. Efforts to improve the titers of fredericamycin, C-1027, platensimycin, and platencin in our lab are highlighted.

摘要

效价提高是发酵工业的一项持续需求。尽管“随机突变和筛选”的传统方法需要大量的时间和资源,但它已经非常有效。理性的代谢工程,利用重组 DNA 技术,为效价提高提供了一种新颖的替代策略,补充了工业中使用的经验方法。对控制次生代谢产物生产的特定调节系统的操纵是代谢工程的一个重要方面,它可以有效地提高发酵效价。在这篇综述中,我们使用来自链霉菌次生代谢的例子,这是临床使用药物的最丰富来源,来说明利用天然调节网络,特别是途径特异性调节剂,来提高效价的威力和实用性。我们实验室在提高弗雷德里克霉素、C-1027、platensimycin 和 platencin 的效价方面所做的努力被强调了。

相似文献

1
Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation.
Appl Microbiol Biotechnol. 2010 Mar;86(1):19-25. doi: 10.1007/s00253-009-2428-3. Epub 2010 Jan 21.
2
Challenges and opportunities for natural product discovery, production, and engineering in native producers versus heterologous hosts.
J Ind Microbiol Biotechnol. 2019 Mar;46(3-4):433-444. doi: 10.1007/s10295-018-2094-5. Epub 2018 Nov 13.
3
Engineered Streptomyces platensis strains that overproduce antibiotics platensimycin and platencin.
Antimicrob Agents Chemother. 2009 Apr;53(4):1299-304. doi: 10.1128/AAC.01358-08. Epub 2009 Jan 21.
4
Platensimycin and platencin: Inspirations for chemistry, biology, enzymology, and medicine.
Biochem Pharmacol. 2017 Jun 1;133:139-151. doi: 10.1016/j.bcp.2016.11.013. Epub 2016 Nov 16.
5
Mechanisms of self-resistance in the platensimycin- and platencin-producing Streptomyces platensis MA7327 and MA7339 strains.
Chem Biol. 2014 Mar 20;21(3):389-397. doi: 10.1016/j.chembiol.2014.01.005. Epub 2014 Feb 20.
7
Structure and semisynthesis of platensimide A, produced by Streptomyces platensis.
Org Lett. 2008 May 1;10(9):1699-702. doi: 10.1021/ol800251v. Epub 2008 Apr 8.
8
Titer improvement and pilot-scale production of platensimycin from Streptomyces platensis SB12026.
J Ind Microbiol Biotechnol. 2016 Jul;43(7):1027-35. doi: 10.1007/s10295-016-1769-z. Epub 2016 Apr 28.
10
Expression of the platencin biosynthetic gene cluster in heterologous hosts yielding new platencin congeners.
J Nat Prod. 2012 Dec 28;75(12):2158-67. doi: 10.1021/np3005985. Epub 2012 Nov 16.

引用本文的文献

2
Identification of a novel butenolide signal system to regulate high production of tylosin in Streptomyces fradiae.
Appl Microbiol Biotechnol. 2025 Jan 22;109(1):18. doi: 10.1007/s00253-024-13396-9.
3
Sequence and origin of the Streptomyces intergenetic-conjugation helper plasmid pUZ8002.
Access Microbiol. 2024 Jun 5;6(6). doi: 10.1099/acmi.0.000808.v3. eCollection 2024.
4
5
Oxytetracycline hyper-production through targeted genome reduction of .
mSystems. 2024 May 16;9(5):e0025024. doi: 10.1128/msystems.00250-24. Epub 2024 Apr 2.
6
7
A new peucemycin derivative and impacts of peuR and bldA on peucemycin biosynthesis in Streptomyces peucetius.
Appl Microbiol Biotechnol. 2024 Dec;108(1):107. doi: 10.1007/s00253-023-12923-4. Epub 2024 Jan 12.
8
Transposon-based identification of genes involved in the rimocidin biosynthesis in Streptomyces rimosus M527.
World J Microbiol Biotechnol. 2023 Oct 28;39(12):359. doi: 10.1007/s11274-023-03814-x.

本文引用的文献

3
Structural insights into nonribosomal peptide enzymatic assembly lines.
Nat Prod Rep. 2009 Aug;26(8):987-1000. doi: 10.1039/b904543k. Epub 2009 May 22.
4
In vivo investigation of the roles of FdmM and FdmM1 in fredericamycin biosynthesis unveiling a new family of oxygenases.
J Biol Chem. 2009 Sep 11;284(37):24735-43. doi: 10.1074/jbc.M109.014191. Epub 2009 Jul 20.
6
Triggering cryptic natural product biosynthesis in microorganisms.
Org Biomol Chem. 2009 May 7;7(9):1753-60. doi: 10.1039/b821578b. Epub 2009 Mar 6.
7
The biosynthetic logic of polyketide diversity.
Angew Chem Int Ed Engl. 2009;48(26):4688-716. doi: 10.1002/anie.200806121.
8
Iterative type I polyketide synthases for enediyne core biosynthesis.
Methods Enzymol. 2009;459:97-112. doi: 10.1016/S0076-6879(09)04605-9.
9
Engineered Streptomyces platensis strains that overproduce antibiotics platensimycin and platencin.
Antimicrob Agents Chemother. 2009 Apr;53(4):1299-304. doi: 10.1128/AAC.01358-08. Epub 2009 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验