Laboratory for Surface Modification, Rutgers University, Piscataway, New Jersey 08854, USA.
Langmuir. 2010 Mar 16;26(6):3911-7. doi: 10.1021/la903212c.
The initial surface chemistry and growth mechanisms of the atomic layer deposition (ALD) of metallic copper on SiO(2) surfaces are investigated using an amidinate precursor (copper(I) di-sec-butylacetamidinate, Cu((s)Bu-amd)) and molecular hydrogen. Using in situ Fourier transform infrared spectroscopy together with calculations based on density functional theory, we show that the initial surface reaction of Cu((s)Bu-amd) with hydroxylated SiO(2) takes place by displacement of one of the sec-butylacetamidinate ligands at a surface -OH site, thus forming a Si-O-Cu-((s)Bu-amd) surface species, evident by the stretching vibrations of Si-O-Cu and the chelating -NCN- bonds. Molecular hydrogen exposure during a subsequent pulse dissociates most of the sec-butylacetamidinate ligands bound to surface Cu, which releases free amidine vapor, leaving Cu atoms free to agglomerate on the surface and thus opening more reactive sites for the next Cu((s)Bu-amd) pulse. Copper agglomeration is evident in the IR absorbance spectra through the partial recovery of the intensity of SiO(2) optical phonon modes upon H(2) reduction, which was lost after the reaction of Cu((s)Bu-amd) with the initial SiO(2) surface. The thermally activated ligand rearrangement from a bridging to a monodentate structure occurs above 220 degrees C through hydrogenation of the ligand by surface hydroxyl groups after exposure to a Cu((s)Bu-amd) pulse. As Cu particles grow with further ALD cycles, the activation temperature is lowered to 185 degrees C, and hydrogenation of the ligand takes place after H(2) pulses, catalyzed by Cu particles on the surface. The surface ligand rearranged into a monodentate structure can be removed during subsequent Cu precursor or H(2) pulses. Finally, we postulate that the attachment of dissociated ligands to the SiO(2) surface during the Cu((s)Bu-amd) pulse can be responsible for carbon contamination at the surface during the initial cycles of growth, where the SiO(2) surface is not yet completely covered by copper metal.
采用酰胺基金属前体(铜(I)双-叔丁基乙酰胺,[Cu((s)Bu-amd)](2))和分子氢,研究了原子层沉积(ALD)过程中金属铜在 SiO(2)表面的初始表面化学和生长机理。利用原位傅里叶变换红外光谱和基于密度泛函理论的计算,我们表明[Cu((s)Bu-amd)](2)与羟基化 SiO(2)的初始表面反应是通过取代一个位于 -OH 位的叔丁基乙酰胺配体来进行的,从而形成 Si-O-Cu-((s)Bu-amd)表面物种,这可以通过 Si-O-Cu 的伸缩振动和螯合的 -NCN-键来证明。随后在脉冲中暴露于氢气会使结合到表面 Cu 上的大多数叔丁基乙酰胺配体发生离解,从而释放出游离的脒蒸气,使 Cu 原子在表面上自由聚集,从而为下一个[Cu((s)Bu-amd)](2)脉冲打开更多的反应性位点。在 H(2)还原后,通过部分恢复 SiO(2)光学声子模式的强度,在红外吸收光谱中可以明显观察到 Cu 原子的团聚,而在[Cu((s)Bu-amd)](2)与初始 SiO(2)表面反应后,这些模式的强度会消失。在暴露于[Cu((s)Bu-amd)](2)脉冲后,通过表面羟基对配体进行加氢,配体的热激活桥联到单齿结构的重排会在 220°C 以上发生。随着进一步的 ALD 循环,Cu 颗粒的生长,在 185°C 以下,配体的加氢反应会在 H(2)脉冲后发生,由表面上的 Cu 颗粒催化。表面配体重排为单齿结构,可以在随后的 Cu 前体或 H(2)脉冲中去除。最后,我们假设在[Cu((s)Bu-amd)](2)脉冲期间,解离配体附着到 SiO(2)表面可能是在生长的初始循环中导致表面碳污染的原因,此时 SiO(2)表面尚未被铜金属完全覆盖。