Chen Peng, Bell Joseph, Eipper Betty A, Solomon Edward I
Department of Chemistry, Stanford University, Stanford, California 94305, USA.
Biochemistry. 2004 May 18;43(19):5735-47. doi: 10.1021/bi0362830.
Spectroscopic methods, density functional calculations, and ligand field analyses are combined to define the geometric models and electronic structure descriptions of the Cu(M) and Cu(H) sites in the oxidized form of the noncoupled binuclear copper protein peptidylglycine alpha-hydroxylating monooxygenase (PHM). The Cu(M) site has a square pyramidal geometry with a long axial Cu-methionine bond and two histidines, H(2)O, and OH(-) as equatorial ligands. The Cu(H) site has a slightly D(2)(d) distorted square planar geometry with three histidines and H(2)O ligands. The structurally inequivalent Cu(M) and Cu(H) sites do not exhibit measurable differences in optical and electron paramagnetic resonance (EPR) spectra, which result from their similar ligand field transition energies and ground-state Cu covalencies. The additional axial methionine ligand interaction and associated square pyramidal distortion of the Cu(M) site have the opposite effect of the strong equatorial OH(-) donor ligand on the Cu d orbital splitting pattern relative to the Cu(H) site leading to similar ligand field transition energies for both sites. The small molecule NO(2)(-) binds in different coordination modes to the Cu(M) and Cu(H) site because of differences in their exchangeable coordination positions resulting in these Cu(II) sites being spectroscopically distinguishable. Azide binding to PHM is used as a spectroscopic and electronic structure analogue to OOH(-) binding to provide a starting point for developing a geometric and electronic structural model for the putative Cu(II)(M)-OOH intermediate in the H-atom abstraction reaction of PHM. Possible electronic structure contributions of the Cu(II)(M)-OOH intermediate to reactivity are considered by correlation to the well-studied L3Cu(II)-OOH model complex (L3 = [HB3-tBu-5-iPrpz]). The Met-S ligand of the Cu(M) site is found to contribute to the stabilization of the Cu(II)(M)-oxyl species, which would be a product of Cu(II)(M)-OOH H-atom abstraction reaction. This Met-S contribution could have a significant effect on the energetics of a H-atom abstraction reaction by the Cu(II)(M)-OOH intermediate.
结合光谱方法、密度泛函计算和配体场分析,以定义非偶联双核铜蛋白肽基甘氨酸α-羟化单加氧酶(PHM)氧化形式中Cu(M)和Cu(H)位点的几何模型和电子结构描述。Cu(M)位点具有四方锥几何结构,轴向Cu-甲硫氨酸键较长,两个组氨酸、H₂O和OH⁻作为赤道配体。Cu(H)位点具有略微D₂d扭曲的四方平面几何结构,有三个组氨酸和H₂O配体。结构上不等价的Cu(M)和Cu(H)位点在光学和电子顺磁共振(EPR)光谱中没有表现出可测量的差异,这是由于它们相似的配体场跃迁能量和基态Cu共价性。相对于Cu(H)位点,Cu(M)位点额外的轴向甲硫氨酸配体相互作用和相关的四方锥畸变对Cu d轨道分裂模式的影响与强赤道OH⁻供体配体相反,导致两个位点具有相似的配体场跃迁能量。小分子NO₂⁻由于其可交换配位位置的差异,以不同的配位模式与Cu(M)和Cu(H)位点结合,导致这些Cu(II)位点在光谱上可区分。叠氮化物与PHM的结合用作OOH⁻结合的光谱和电子结构类似物,为建立PHM氢原子抽象反应中假定的Cu(II)(M)-OOH中间体的几何和电子结构模型提供了一个起点。通过与研究充分的L3Cu(II)-OOH模型配合物(L3 = [HB[3-tBu-5-iPrpz]₃])相关联,考虑了Cu(II)(M)-OOH中间体对反应性可能的电子结构贡献。发现Cu(M)位点的Met-S配体有助于稳定Cu(II)(M)-氧基物种,这将是Cu(II)(M)-OOH氢原子抽象反应的产物。这种Met-S贡献可能对Cu(II)(M)-OOH中间体氢原子抽象反应的能量学有显著影响。