Centro de Astrobiología, INTA-CSIC, 28850 Madrid, Spain.
Langmuir. 2010 Mar 16;26(6):4113-8. doi: 10.1021/la903230t.
We have studied the first stages leading to the formation of self-assembled monolayers of S-cysteine molecules adsorbed on a Au(111) surface. Density functional theory (DFT) calculations for the adsorption of individual cysteine molecules on Au(111) at room temperature show low-energy barriers all over the 2D Au(111) unit cell. As a consequence, cysteine molecules diffuse freely on the Au(111) surface and they can be regarded as a 2D molecular gas. The balance between molecule-molecule and molecule-substrate interactions induces molecular condensation and evaporation from the morphological surface structures (steps, reconstruction edges, etc.) as revealed by scanning tunnelling microscopy (STM) images. These processes lead progressively to the formation of a number of stable arrangements, not previously reported, such as single-molecular rows, trimers, and 2D islands. The condensation of these structures is driven by the aggregation of new molecules, stabilized by the formation of electrostatic interactions between adjacent NH(3)(+) and COO(-) groups, together with adsorption at a slightly more favorable quasi-top site of the herringbone Au reconstruction.
我们研究了导致 S-半胱氨酸分子自组装单层在 Au(111)表面吸附的初始阶段。在室温下,对单个半胱氨酸分子在 Au(111)上吸附的密度泛函理论(DFT)计算表明,在整个 2D Au(111)单位胞中,能量势垒都很低。因此,半胱氨酸分子在 Au(111)表面上自由扩散,它们可以被视为 2D 分子气体。分子-分子和分子-基底相互作用之间的平衡导致分子从形态表面结构(台阶、重构边缘等)的凝聚和蒸发,这正如扫描隧道显微镜(STM)图像所揭示的那样。这些过程逐渐导致了一些以前没有报道过的稳定排列的形成,如单分子行、三聚体和 2D 岛。这些结构的凝聚是由新分子的聚集驱动的,通过相邻 NH(3)(+)和 COO(-)基团之间形成的静电相互作用的稳定,以及在略微更有利的准顶位的钉扎吸附而稳定。