Suppr超能文献

A specific cell surface glycoconjugate controlling cell motility: evidence by functional monoclonal antibodies that inhibit cell motility and tumor cell metastasis.

作者信息

Miyake M, Hakomori S I

机构信息

Biomembrane Institute, Seattle, Washington 98119.

出版信息

Biochemistry. 1991 Apr 2;30(13):3328-34. doi: 10.1021/bi00227a023.

Abstract

The biochemical basis of cell motility has been viewed as a complex process involving cell surface membrane proteins, integrin receptors, growth factors and their receptors, and cytoskeletal components [Rosen & Goldberg (1989) In Vitro 25, 1079]. The possible involvement of glycoconjugates at the cell surface in controlling cell motility has not been systematically investigated. We addressed this question using functional monoclonal antibodies (MAbs), which inhibit cell motility and the metastatic potential of tumor cells, as probes. Two such MAbs, derived from two independent processes of immunization and selection, were found to directed to a common specific carbohydrate structure, Fuc alpha 1----2Gal beta 1----R. MAb MIA-15-5 was established after immunization of mice with small cell lung carcinoma line PC7 and selected on the basis of inhibition of U937 and HEL cell migration. MAb MIA-22-20 was established after immunization with lung adenocarcinoma line MAC-10 and selected on the basis of inhibition of MAC-10 cell migration. These two MAbs were both IgM and were consistently reactive with the Fuc alpha 1----2Gal beta 1----R structure, regardless of the identity of the R group. Various other anti-H MAbs, specific to carrier isotype, did not affect cell motility. MAb MIA-15-5 reacted with 30-40% of high-metastatic variant BL6 of mouse melanoma B16 line but with only less than 5% of low-metastatic variant F1. Metastatic deposition to lung after injection of BL6 cells was inhibited if MAb MIA-15-5 was injected within 3 h but was not inhibited by injection of other anti-H antibodies under the same conditions.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验