Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
J Chem Phys. 2010 Jan 14;132(2):024713. doi: 10.1063/1.3269673.
We present molecular dynamics simulations of the liquid-vapor interface of 1M salt solutions of nonpolarizable NaCl, NaBr, and NaI in polarizable transferable intermolecular potential 4-point with charge dependent polarizability water [B. A. Bauer et al., J. Chem. Theory Comput. 5, 359 (2009)]; this water model accommodates increased solvent polarizability (relative to the condensed phase) in the interfacial and vapor regions. We employ fixed-charge ion models developed in conjunction with the TIP4P-QDP water model to reproduce ab initio ion-water binding energies and ion-water distances for isolated ion-water pairs. The transferability of these ion models to the condensed phase was validated with hydration free energies computed using thermodynamic integration (TI) and appropriate energy corrections. Density profiles of Cl(-), Br(-), and I(-) exhibit charge layering in the interfacial region; anions and cation interfacial probabilities show marked localization, with the anions penetrating further toward the vapor than the cations. Importantly, in none of the cases studied do anions favor the outermost regions of the interface; there is always an aqueous region between the anions and vapor phase. Observed interfacial charge layering is independent of the strength of anion-cation interactions as manifest in anion-cation contact ion pair peaks and solvent separated ion pair peaks; by artificially modulating the strength of anion-cation interactions (independent of their interactions with solvent), we find little dependence on charge layering particularly for the larger iodide anion. The present results reiterate the widely held view of the importance of solvent and ion polarizability in mediating specific anion surface segregation effects. Moreover, due to the higher parametrized polarizability of the TIP4P-QDP condensed phase {1.31 A(3) for TIP4P-QDP versus 1.1 A(3) (TIP4P-FQ) and 0.87 A(3) (POL3) [Ponder and Case, Adv. Protein Chem. 66, 27 (2003)]} based on ab initio calculations of the condensed-phase polarizability reduction in liquid water, the present simulations highlight the role of water polarizability in inducing water molecular dipole moments parallel to the interface normal (and within the interfacial region) so as to favorably oppose the macrodipole generated by the separation of anion and cation charge. Since the TIP4P-QDP water polarizability approaches that of the experimental vapor phase value for water, the present results suggest a fundamental role of solvent polarizability in accommodating the large spatial dipole generated by the separation of ion charges. The present results draw further attention to the question of what exact value of condensed phase water polarizability to incorporate in classical polarizable water force fields.
我们呈现了非极化的 NaCl、NaBr 和 NaI 在可极化转移相互作用 4 点势中的 1M 盐溶液的液-气相界面的分子动力学模拟,该势具有依赖于电荷的极化率的水分子[B. A. Bauer 等人,J. Chem. Theory Comput. 5, 359 (2009)]; 这种水分子模型在界面和蒸汽区域中适应增加的溶剂极化率(相对于凝聚相)。我们使用与 TIP4P-QDP 水模型一起开发的固定电荷离子模型来重现孤立离子-水分子对的从头算离子-水结合能和离子-水距离。通过使用热力学积分(TI)和适当的能量校正计算的水合自由能验证了这些离子模型在凝聚相中的可转移性。Cl(-)、Br(-) 和 I(-)的密度分布在界面区域表现出电荷分层; 阴离子和阳离子界面概率显示出明显的局部化,阴离子比阳离子更深入地穿透到蒸汽中。重要的是,在所研究的情况下,阴离子都不优先位于界面的最外层; 在阴离子和气相之间总是存在水相区域。观察到的界面电荷分层与阴离子-阳离子相互作用的强度无关,这表现在阴离子-阳离子接触离子对峰和溶剂分离离子对峰中; 通过人为调节阴离子-阳离子相互作用的强度(独立于它们与溶剂的相互作用),我们发现电荷分层几乎没有依赖性,特别是对于较大的碘化物阴离子。目前的结果重申了溶剂和离子极化率在介导特定阴离子表面分馏效应中的重要性这一广泛观点。此外,由于 TIP4P-QDP 凝聚相的参数化较高的极化率{1.31 A(3)(TIP4P-QDP)与 1.1 A(3)(TIP4P-FQ)和 0.87 A(3)(POL3)[Ponder 和 Case,Adv. Protein Chem. 66, 27 (2003)]}基于对液体水中凝聚相极化率降低的从头算计算,目前的模拟突出了水极化率在诱导水分子偶极矩平行于界面法线(并在界面区域内)方面的作用,以有利于对抗阴离子和阳离子电荷分离产生的宏观偶极矩。由于 TIP4P-QDP 水的极化率接近实验蒸汽相水的值,因此目前的结果表明,溶剂极化率在容纳由离子电荷分离产生的大空间偶极矩方面起着基本作用。目前的结果进一步引起了人们对在经典可极化水力场中包含何种确切的凝聚相水极化率的问题的关注。