Suppr超能文献

CHARMM:生物分子模拟程序。

CHARMM: the biomolecular simulation program.

作者信息

Brooks B R, Brooks C L, Mackerell A D, Nilsson L, Petrella R J, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner A R, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor R W, Post C B, Pu J Z, Schaefer M, Tidor B, Venable R M, Woodcock H L, Wu X, Yang W, York D M, Karplus M

机构信息

Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

J Comput Chem. 2009 Jul 30;30(10):1545-614. doi: 10.1002/jcc.21287.

Abstract

CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecular simulation program. It has been developed over the last three decades with a primary focus on molecules of biological interest, including proteins, peptides, lipids, nucleic acids, carbohydrates, and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estimators, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. The CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numerous platforms in both serial and parallel architectures. This article provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM article in 1983.

摘要

CHARMM(哈佛分子力学化学)是一个用途广泛且被广泛使用的分子模拟程序。在过去三十年中它不断发展,主要专注于具有生物学意义的分子,包括蛋白质、肽、脂质、核酸、碳水化合物和小分子配体,这些分子存在于溶液、晶体和膜环境中。对于此类系统的研究,该程序提供了一整套计算工具,包括众多构象和路径采样方法、自由能估算器、分子最小化、动力学和分析技术以及模型构建功能。CHARMM程序适用于涉及更广泛的多粒子系统类别的问题。使用CHARMM进行计算可以采用多种不同的能量函数和模型,从混合量子力学 - 分子力学力场,到具有显式溶剂和各种边界条件的全原子经典势能函数,再到隐式溶剂和膜模型。该程序已被移植到众多串行和并行架构的平台上。本文概述了该程序的现状,重点介绍自1983年发表原始CHARMM文章以来的发展情况。

相似文献

1
CHARMM: the biomolecular simulation program.
J Comput Chem. 2009 Jul 30;30(10):1545-614. doi: 10.1002/jcc.21287.
2
CHARMM additive and polarizable force fields for biophysics and computer-aided drug design.
Biochim Biophys Acta. 2015 May;1850(5):861-871. doi: 10.1016/j.bbagen.2014.08.004. Epub 2014 Aug 19.
4
The Amber biomolecular simulation programs.
J Comput Chem. 2005 Dec;26(16):1668-88. doi: 10.1002/jcc.20290.
5
Comparison of protein force fields for molecular dynamics simulations.
Methods Mol Biol. 2008;443:63-88. doi: 10.1007/978-1-59745-177-2_4.
6
CHARMM-GUI 10 years for biomolecular modeling and simulation.
J Comput Chem. 2017 Jun 5;38(15):1114-1124. doi: 10.1002/jcc.24660. Epub 2016 Nov 14.
8
Integrated Modeling Program, Applied Chemical Theory (IMPACT).
J Comput Chem. 2005 Dec;26(16):1752-80. doi: 10.1002/jcc.20292.
9
Empirical force fields for biological macromolecules: overview and issues.
J Comput Chem. 2004 Oct;25(13):1584-604. doi: 10.1002/jcc.20082.
10
Some practical approaches to treating electrostatic polarization of proteins.
Acc Chem Res. 2014 Sep 16;47(9):2795-803. doi: 10.1021/ar500094n. Epub 2014 Jun 2.

引用本文的文献

1
A novel sulfamoylphenyl-dihydro-thiadiazole derivative as a dual EGFR and carbonic anhydrase inhibitor for cancer therapy.
PLoS One. 2025 Sep 4;20(9):e0328305. doi: 10.1371/journal.pone.0328305. eCollection 2025.
2
The J-shape of β2GPI reveals a cryptic discontinuous epitope across domains I and II.
J Struct Biol X. 2025 Aug 20;12:100135. doi: 10.1016/j.yjsbx.2025.100135. eCollection 2025 Dec.
4
Opsins are Phospholipid Scramblases in All Domains of Life.
bioRxiv. 2025 Aug 18:2025.08.17.670764. doi: 10.1101/2025.08.17.670764.
8
In-silico evaluation of putative maternal semiochemicals of pigs with receptor proteins.
Front Mol Biosci. 2025 Aug 8;12:1600209. doi: 10.3389/fmolb.2025.1600209. eCollection 2025.
9
Multi-state catch bond formed in the Izumo1:Juno complex that initiates human fertilization.
Nat Commun. 2025 Aug 26;16(1):7952. doi: 10.1038/s41467-025-62427-0.
10
STIM1 transmembrane helix dimerization captured by AI-guided transition path sampling.
Proc Natl Acad Sci U S A. 2025 Sep 2;122(35):e2506516122. doi: 10.1073/pnas.2506516122. Epub 2025 Aug 26.

本文引用的文献

3
Structural Determinants of Transmembrane β-Barrels.
J Chem Theory Comput. 2005 Jul;1(4):716-22. doi: 10.1021/ct050055x.
6
Additive and Classical Drude Polarizable Force Fields for Linear and Cyclic Ethers.
J Chem Theory Comput. 2007 May;3(3):1120-33. doi: 10.1021/ct600350s.
8
Calculation of Standard Binding Free Energies:  Aromatic Molecules in the T4 Lysozyme L99A Mutant.
J Chem Theory Comput. 2006 Sep;2(5):1255-73. doi: 10.1021/ct060037v.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验