Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand.
Int J Food Microbiol. 2010 Mar 31;138(1-2):39-49. doi: 10.1016/j.ijfoodmicro.2009.12.027. Epub 2010 Jan 11.
The adhS gene which encodes the smallest subunit, subunit III, of quinoprotein alcohol dehydrogenase (PQQ-ADH) from Acetobacter pasteurianus SKU1108 has been cloned and characterized. The role of this subunit on the function of PQQ-ADH was investigated by construction of adhS gene disruptant and mutants. The adhS gene disruptant completely lost its PQQ-ADH activity and acetate-producing ability but retained acetic acid toleration. In contrast, this disruptant grew well, even better than the wild type, in the ethanol containing medium even though its PQQ-ADH activity and ethanol oxidizing ability was completely lost, while NAD(+)-dependent ADH (NAD(+)-ADH) was induced. Heme staining and immunoblot analysis of both membrane and soluble fractions with anti-ADH subunit III suggested that ethanol did not affect the adhS gene expression but induced PQQ-ADH activity. Over-expressed adhS did not enhance acetic acid production in both the wild type and the adhS disruptant. In addition, deletion analysis of upstream region of adhS gene suggested that its tentative promoter(s) might be located at around 118-268 bp upstream from an initiation codon. Random mutagenesis of adhS gene revealed that complete loss of PQQ-ADH activity and ethanol oxidizing ability were observed in the mutants' lack of the 140 and 73 amino acid residues at the C-terminal, whereas the lack of 22 amino acid residues at the C-terminal affected neither the PQQ-ADH activity nor ethanol oxidizing ability. In addition, some amino acid substitutions such as Leu18Gln, Ala26Val, Val36Ile, Val54Ile, Gly55Asp, Val70Ala and Val107Ala did not show any affect on PQQ-ADH activity and ethanol oxidizing ability. Interestingly, alteration of Thr104Lys led to a complete loss of ethanol oxidizing ability. However, point mutation at the possible promoter region also exhibited low PQQ-ADH activity and ethanol oxidizing ability. This result suggests that 104Thr might be involved in molecular coupling with subunit I in order to construct active ADH complex, whereas 22 amino acid residues at C-terminal may be not necessary for PQQ-ADH activity.
已克隆并鉴定了来自醋杆菌 SKU1108 的醌蛋白醇脱氢酶 (PQQ-ADH) 的最小亚基亚基 III 的 adhS 基因。通过构建 adhS 基因缺失突变体和突变体,研究了该亚基对 PQQ-ADH 功能的作用。adhS 基因缺失突变体完全失去了 PQQ-ADH 活性和产生乙酸盐的能力,但保留了乙酸耐受性。相比之下,尽管该突变体的 PQQ-ADH 活性和乙醇氧化能力完全丧失,但仍能在含有乙醇的培养基中良好生长,甚至比野生型更好,同时诱导 NAD(+)-依赖性 ADH (NAD(+)-ADH)。膜和可溶性部分的血红素染色和抗 ADH 亚基 III 的免疫印迹分析表明,乙醇不会影响 adhS 基因的表达,但会诱导 PQQ-ADH 活性。在野生型和 adhS 缺失突变体中,过表达 adhS 并未增加乙酸的产生。此外,adhS 基因上游区的缺失分析表明,其推定启动子可能位于起始密码子上游约 118-268bp 处。adhS 基因的随机诱变显示,在缺乏 C 末端 140 和 73 个氨基酸残基的突变体中,完全丧失了 PQQ-ADH 活性和乙醇氧化能力,而在 C 末端缺乏 22 个氨基酸残基既不影响 PQQ-ADH 活性也不影响乙醇氧化能力。此外,一些氨基酸取代,如 Leu18Gln、Ala26Val、Val36Ile、Val54Ile、Gly55Asp、Val70Ala 和 Val107Ala,对 PQQ-ADH 活性和乙醇氧化能力没有任何影响。有趣的是,Thr104Lys 的改变导致完全丧失乙醇氧化能力。然而,可能的启动子区域的点突变也表现出低 PQQ-ADH 活性和乙醇氧化能力。该结果表明,104Thr 可能参与与亚基 I 的分子偶联以构建活性 ADH 复合物,而 C 末端的 22 个氨基酸残基可能不是 PQQ-ADH 活性所必需的。