Department of Psychology, University of Amsterdam, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands.
Neuropsychologia. 2010 Apr;48(5):1510-6. doi: 10.1016/j.neuropsychologia.2009.11.016. Epub 2010 Jan 25.
Crawford and Howell (1998) have pointed out that the common practice of z-score inference on cognitive disability is inappropriate if a patient's performance on a task is compared with relatively few typical control individuals. Appropriate univariate and multivariate statistical tests have been proposed for these studies, but these are only valid if the data are Gaussian (normal) distributed. Previous studies have investigated the consequences for Type I error rates of using the univariate test when data are not Gaussian. In this paper we examine the effects of violation of the Gaussian assumption on nominal Type I error rates for the multivariate test. We also consider a new test that has been devised recently, called Cramér's test, as a viable alternative for the multivariate normative comparison. In simulations we show that the new test not only provides a distribution free alternative for existing methods, but also has the advantage that it is substantially more powerful in most common research settings. We demonstrate the use of the new test with an application to two individuals diagnosed with autism.
克劳福德和豪厄尔(1998)指出,如果将患者在任务上的表现与相对较少的典型对照个体进行比较,那么对认知障碍进行 z 分数推断的常见做法是不恰当的。已经为这些研究提出了适当的单变量和多变量统计检验,但只有在数据呈高斯(正态)分布的情况下才有效。先前的研究已经调查了当数据不是高斯分布时使用单变量检验对 I 型错误率的影响。在本文中,我们研究了违反高斯假设对多元检验的名义 I 型错误率的影响。我们还考虑了最近设计的一种新的检验方法,称为 Cramér 检验,作为多元规范比较的可行替代方法。在模拟中,我们表明,新的检验不仅为现有方法提供了一种无分布的替代方法,而且还有一个优点,即在大多数常见的研究设置中,它具有更高的功效。我们通过对两个被诊断为自闭症的个体的应用来说明新的检验方法。