Suppr超能文献

ATXN1 功能丧失通过增强 β-淀粉样前体蛋白的 β-分泌酶加工增加淀粉样 β-蛋白水平。

Loss of function of ATXN1 increases amyloid beta-protein levels by potentiating beta-secretase processing of beta-amyloid precursor protein.

机构信息

Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129-2060, USA.

出版信息

J Biol Chem. 2010 Mar 19;285(12):8515-26. doi: 10.1074/jbc.M109.079079. Epub 2010 Jan 22.

Abstract

Alzheimer disease (AD) is a devastating neurodegenerative disease with complex and strong genetic inheritance. Four genes have been established to either cause familial early onset AD (APP, PSEN1, and PSEN2) or to increase susceptibility for late onset AD (APOE). To date approximately 80% of the late onset AD genetic variance remains elusive. Recently our genome-wide association screen identified four novel late onset AD candidate genes. Ataxin 1 (ATXN1) is one of these four AD candidate genes and has been indicated to be the disease gene for spinocerebellar ataxia type 1, which is also a neurodegenerative disease. Mounting evidence suggests that the excessive accumulation of Abeta, the proteolytic product of beta-amyloid precursor protein (APP), is the primary AD pathological event. In this study, we ask whether ATXN1 may lead to AD pathogenesis by affecting Abeta and APP processing utilizing RNA interference in a human neuronal cell model and mouse primary cortical neurons. We show that knock-down of ATXN1 significantly increases the levels of both Abeta40 and Abeta42. This effect could be rescued with concurrent overexpression of ATXN1. Moreover, overexpression of ATXN1 decreased Abeta levels. Regarding the underlying molecular mechanism, we show that the effect of ATXN1 expression on Abeta levels is modulated via beta-secretase cleavage of APP. Taken together, ATXN1 functions as a genetic risk modifier that contributes to AD pathogenesis through a loss-of-function mechanism by regulating beta-secretase cleavage of APP and Abeta levels.

摘要

阿尔茨海默病(AD)是一种具有复杂且强大遗传遗传的破坏性神经退行性疾病。已经确定了四个基因,要么导致家族性早发性 AD(APP、PSEN1 和 PSEN2),要么增加晚发性 AD 的易感性(APOE)。迄今为止,大约 80%的晚发性 AD 遗传变异仍然难以捉摸。最近,我们的全基因组关联筛查确定了四个新的晚发性 AD 候选基因。Ataxin 1(ATXN1)是这四个 AD 候选基因之一,已被确定为脊髓小脑共济失调 1 型的疾病基因,这也是一种神经退行性疾病。越来越多的证据表明,β-淀粉样前体蛋白(APP)的蛋白水解产物 Abeta 的过度积累是 AD 的主要病理事件。在这项研究中,我们利用人类神经元细胞模型和小鼠原代皮质神经元中的 RNA 干扰来研究 ATXN1 是否通过影响 Abeta 和 APP 处理导致 AD 发病机制。我们发现 ATXN1 的敲低显著增加了 Abeta40 和 Abeta42 的水平。这种效应可以通过 ATXN1 的共表达来挽救。此外,ATXN1 的过表达降低了 Abeta 水平。关于潜在的分子机制,我们表明 ATXN1 表达对 Abeta 水平的影响是通过 APP 的β-分泌酶切割来调节的。总之,ATXN1 作为一种遗传风险修饰因子,通过调节 APP 和 Abeta 水平的β-分泌酶切割,通过失活功能机制发挥作用,导致 AD 发病机制。

相似文献

引用本文的文献

4
Pathogenic mechanisms underlying spinocerebellar ataxia type 1.脊髓小脑共济失调 1 型的发病机制。
Cell Mol Life Sci. 2020 Oct;77(20):4015-4029. doi: 10.1007/s00018-020-03520-z. Epub 2020 Apr 18.

本文引用的文献

7
MicroRNAs can regulate human APP levels.微小 RNA 可以调节人 APP 水平。
Mol Neurodegener. 2008 Aug 6;3:10. doi: 10.1186/1750-1326-3-10.
9
Genome-wide analysis of alternative pre-mRNA splicing.前体mRNA可变剪接的全基因组分析
J Biol Chem. 2008 Jan 18;283(3):1229-33. doi: 10.1074/jbc.R700033200. Epub 2007 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验