Suppr超能文献

壁结构、大分子组成和表面聚合物对微小隐孢子虫卵囊存活和传播的意义。

Significance of wall structure, macromolecular composition, and surface polymers to the survival and transport of Cryptosporidium parvum oocysts.

机构信息

Department of Microbiology, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, USA.

出版信息

Appl Environ Microbiol. 2010 Mar;76(6):1926-34. doi: 10.1128/AEM.02295-09. Epub 2010 Jan 22.

Abstract

The structure and composition of the oocyst wall are primary factors determining the survival and hydrologic transport of Cryptosporidium parvum oocysts outside the host. Microscopic and biochemical analyses of whole oocysts and purified oocyst walls were undertaken to better understand the inactivation kinetics and hydrologic transport of oocysts in terrestrial and aquatic environments. Results of microscopy showed an outer electron-dense layer, a translucent middle layer, two inner electron-dense layers, and a suture structure embedded in the inner electron-dense layers. Freeze-substitution showed an expanded glycocalyx layer external to the outer bilayer, and Alcian Blue staining confirmed its presence on some but not all oocysts. Biochemical analyses of purified oocyst walls revealed carbohydrate components, medium- and long-chain fatty acids, and aliphatic hydrocarbons. Purified walls contained 7.5% total protein (by the Lowry assay), with five major bands in SDS-PAGE gels. Staining of purified oocyst walls with magnesium anilinonaphthalene-8-sulfonic acid indicated the presence of hydrophobic proteins. These structural and biochemical analyses support a model of the oocyst wall that is variably impermeable and resistant to many environmental pressures. The strength and flexibility of oocyst walls appear to depend on an inner layer of glycoprotein. The temperature-dependent permeability of oocyst walls may be associated with waxy hydrocarbons in the electron-translucent layer. The complex chemistry of these layers may explain the known acid-fast staining properties of oocysts, as well as some of the survival characteristics of oocysts in terrestrial and aquatic environments. The outer glycocalyx surface layer provides immunogenicity and attachment possibilities, and its ephemeral nature may explain the variable surface properties noted in oocyst hydrologic transport studies.

摘要

卵囊壁的结构和组成是决定隐孢子虫卵囊在宿主体外存活和水力学传输的主要因素。对整个卵囊和纯化卵囊壁进行了显微镜和生化分析,以更好地了解卵囊在陆地和水生环境中的失活动力学和水力学传输。显微镜结果显示,卵囊具有外层电子致密层、中层半透明层、内层两层电子致密层和嵌入内层电子致密层中的缝合结构。冷冻置换显示在外层双层之外有一个扩展的糖萼层,阿利新蓝染色证实其存在于一些但不是所有的卵囊上。纯化卵囊壁的生化分析显示含有碳水化合物成分、中链和长链脂肪酸以及脂肪烃。纯化壁含有 7.5%的总蛋白(用 Lowry 法测定),SDS-PAGE 凝胶中有 5 条主要条带。用镁苯胺萘-8-磺酸对纯化卵囊壁进行染色表明存在疏水性蛋白。这些结构和生化分析支持卵囊壁的可变不渗透性和对许多环境压力的抗性模型。卵囊壁的强度和灵活性似乎取决于一层糖蛋白内层。卵囊壁的温度依赖性渗透性可能与电子半透明层中的蜡状烃有关。这些层的复杂化学性质可能解释了卵囊已知的耐酸染色特性,以及卵囊在陆地和水生环境中的一些存活特征。外层糖萼表面层提供了免疫原性和附着的可能性,其短暂的性质可能解释了在卵囊水力学传输研究中观察到的可变表面特性。

相似文献

5
Strategies to discover the structural components of cyst and oocyst walls.
Eukaryot Cell. 2013 Dec;12(12):1578-87. doi: 10.1128/EC.00213-13. Epub 2013 Oct 4.
8
Calcium-Mediated Biophysical Binding of Cryptosporidium parvum Oocysts to Surfaces Is Sensitive to Oocyst Age.
Appl Environ Microbiol. 2019 Aug 14;85(17). doi: 10.1128/AEM.00816-19. Print 2019 Sep 1.
9
Pseudo-Second-Order Calcium-Mediated Cryptosporidium parvum Oocyst Attachment to Environmental Biofilms.
Appl Environ Microbiol. 2016 Dec 15;83(1). doi: 10.1128/AEM.02339-16. Print 2017 Jan 1.
10
Assessment of a dye permeability assay for determination of inactivation rates of Cryptosporidium parvum oocysts.
Appl Environ Microbiol. 1997 Oct;63(10):3844-50. doi: 10.1128/aem.63.10.3844-3850.1997.

引用本文的文献

1
Infection During Pregnancy and Effects on Pregnancy Outcomes in Israel.
Microorganisms. 2024 Dec 13;12(12):2572. doi: 10.3390/microorganisms12122572.
2
Evaluation of aqueous chlorine and peracetic acid sanitizers to inactivate protozoa and bacteria of concern in agricultural water.
Appl Environ Microbiol. 2025 Jan 31;91(1):e0165324. doi: 10.1128/aem.01653-24. Epub 2024 Dec 6.
4
Surrogates of foodborne and waterborne protozoan parasites: A review.
Food Waterborne Parasitol. 2023 Oct 31;33:e00212. doi: 10.1016/j.fawpar.2023.e00212. eCollection 2023 Dec.
5
Prevalence, risk factors and molecular epidemiology of neonatal cryptosporidiosis in calves: The Argentine perspective.
Curr Res Parasitol Vector Borne Dis. 2023 Oct 4;4:100147. doi: 10.1016/j.crpvbd.2023.100147. eCollection 2023.
6
Scalable cryopreservation of infectious Cryptosporidium hominis oocysts by vitrification.
PLoS Pathog. 2023 Jun 8;19(6):e1011425. doi: 10.1371/journal.ppat.1011425. eCollection 2023 Jun.
7
Enrichment and proteomic identification of Cryptosporidium parvum oocyst wall.
Parasit Vectors. 2022 Sep 23;15(1):335. doi: 10.1186/s13071-022-05448-8.
9
and waterborne outbreaks - A mini review.
Trop Parasitol. 2021 Jan-Jun;11(1):11-15. doi: 10.4103/tp.TP_68_20. Epub 2021 May 14.
10
Structure, composition, and roles of the oocyst and sporocyst walls.
Cell Surf. 2018 Dec 19;5:100016. doi: 10.1016/j.tcsw.2018.100016. eCollection 2019 Dec.

本文引用的文献

1
Evaluation of the effect of temperature on the die-off rate for Cryptosporidium parvum oocysts in water, soils, and feces.
Appl Environ Microbiol. 2008 Dec;74(23):7101-7. doi: 10.1128/AEM.01442-08. Epub 2008 Oct 10.
2
Critical processes affecting Cryptosporidium oocyst survival in the environment.
Parasitology. 2007 Mar;134(Pt 3):309-23. doi: 10.1017/S0031182006001491. Epub 2006 Nov 13.
4
Inactivation of Cryptosporidium parvum Oocysts by Ammonia.
Appl Environ Microbiol. 1998 Feb;64(2):784-8. doi: 10.1128/AEM.64.2.784-788.1998.
5
Environmental temperature controls Cryptosporidium oocyst metabolic rate and associated retention of infectivity.
Appl Environ Microbiol. 2005 Jul;71(7):3848-57. doi: 10.1128/AEM.71.7.3848-3857.2005.
6
Structural analysis of Cryptosporidium parvum.
Microsc Microanal. 2004 Oct;10(5):586-601. doi: 10.1017/S1431927604040929.
7
The genome of Cryptosporidium hominis.
Nature. 2004 Oct 28;431(7012):1107-12. doi: 10.1038/nature02977.
8
Current progress in the fatty acid metabolism in Cryptosporidium parvum.
J Eukaryot Microbiol. 2004 Jul-Aug;51(4):381-8. doi: 10.1111/j.1550-7408.2004.tb00384.x.
9
Complete genome sequence of the apicomplexan, Cryptosporidium parvum.
Science. 2004 Apr 16;304(5669):441-5. doi: 10.1126/science.1094786. Epub 2004 Mar 25.
10
The Cryptosporidium oocyst wall protein is a member of a multigene family and has a homolog in Toxoplasma.
Infect Immun. 2004 Feb;72(2):980-7. doi: 10.1128/IAI.72.2.980-987.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验