Suppr超能文献

从存档的肿瘤样本中进行表达定量的 3' 末端测序(3SEQ)。

3'-end sequencing for expression quantification (3SEQ) from archival tumor samples.

机构信息

Department of Pathology, Stanford University Medical Center, Stanford, California, United States of America.

出版信息

PLoS One. 2010 Jan 19;5(1):e8768. doi: 10.1371/journal.pone.0008768.

Abstract

Gene expression microarrays are the most widely used technique for genome-wide expression profiling. However, microarrays do not perform well on formalin fixed paraffin embedded tissue (FFPET). Consequently, microarrays cannot be effectively utilized to perform gene expression profiling on the vast majority of archival tumor samples. To address this limitation of gene expression microarrays, we designed a novel procedure (3'-end sequencing for expression quantification (3SEQ)) for gene expression profiling from FFPET using next-generation sequencing. We performed gene expression profiling by 3SEQ and microarray on both frozen tissue and FFPET from two soft tissue tumors (desmoid type fibromatosis (DTF) and solitary fibrous tumor (SFT)) (total n = 23 samples, which were each profiled by at least one of the four platform-tissue preparation combinations). Analysis of 3SEQ data revealed many genes differentially expressed between the tumor types (FDR<0.01) on both the frozen tissue (approximately 9.6K genes) and FFPET (approximately 8.1K genes). Analysis of microarray data from frozen tissue revealed fewer differentially expressed genes (approximately 4.64K), and analysis of microarray data on FFPET revealed very few (69) differentially expressed genes. Functional gene set analysis of 3SEQ data from both frozen tissue and FFPET identified biological pathways known to be important in DTF and SFT pathogenesis and suggested several additional candidate oncogenic pathways in these tumors. These findings demonstrate that 3SEQ is an effective technique for gene expression profiling from archival tumor samples and may facilitate significant advances in translational cancer research.

摘要

基因表达微阵列是用于全基因组表达谱分析的最广泛使用的技术。然而,微阵列在福尔马林固定石蜡包埋组织(FFPET)上的性能不佳。因此,微阵列不能有效地用于对绝大多数存档肿瘤样本进行基因表达谱分析。为了解决基因表达微阵列的这一局限性,我们设计了一种新的程序(用于表达定量的 3'端测序(3SEQ)),用于使用下一代测序从 FFPET 进行基因表达谱分析。我们通过 3SEQ 和微阵列对两种软组织肿瘤(硬纤维瘤(DTF)和孤立性纤维瘤(SFT))的冷冻组织和 FFPET 进行了基因表达谱分析(总 n = 23 个样本,每个样本均至少用四种平台-组织制备组合之一进行了分析)。3SEQ 数据分析揭示了两种肿瘤类型之间(FDR<0.01)的许多差异表达基因(冷冻组织约 9.6K 个基因,FFPET 约 8.1K 个基因)。冷冻组织的微阵列数据分析揭示了较少的差异表达基因(约 4.64K),而 FFPET 的微阵列数据分析则揭示了很少的差异表达基因(69)。来自冷冻组织和 FFPET 的 3SEQ 数据的功能基因集分析确定了在 DTF 和 SFT 发病机制中重要的生物学途径,并提出了这些肿瘤中另外几个候选致癌途径。这些发现表明 3SEQ 是一种从存档肿瘤样本中进行基因表达谱分析的有效技术,并可能促进转化癌症研究的重大进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验