Suppr超能文献

可见近红外光谱分析中用于非侵入式葡萄汁品质测定的混合变量选择

Hybrid variable selection in visible and near-infrared spectral analysis for non-invasive quality determination of grape juice.

机构信息

College of Biosystems Engineering and Food Science, Zhejiang University, 268 Kaixuan Road, Hangzhou, Zhejiang 310029, China.

出版信息

Anal Chim Acta. 2010 Feb 5;659(1-2):229-37. doi: 10.1016/j.aca.2009.11.045. Epub 2009 Nov 26.

Abstract

Several wavelength variable selection algorithms were compared to analyze visible and near-infrared (Vis-NIR) spectra for the non-invasive quantitative determination of soluble solids content (SSC) and pH in grape juice. In order to eliminate useless variables and improve the signal/noise ratio, the pretreated full spectra were firstly calculated by different informative variable selection methods. Uninformation variable elimination (UVE) did better than interval partial least squares (iPLS), synergy interval partial least squares (siPLS) and backward interval partial least squares (biPLS). Successive projections algorithm (SPA) was further operated to select variables. Finally, nine and eleven variables were obtained for respectively SSC and pH analyses. The better results of UVE-SPA-PLS models compared to those of SPA-PLS models in both SSC and pH analyses show that it is necessary to execute UVE before SPA, which can both reduce the calculation time and increase the model's performance. Furthermore, two common used calibration methods, PLS and multiple linear regression (MLR), were compared. UVE-SPA-MLR obtained better results than UVE-SPA-PLS in both SSC and pH analyses. The coefficients of determination for prediction set (r(p)(2)) and residual predictive deviation (RPD) obtained by UVE-SPA-MLR are 0.979 and 6.971 for SSC, and 0.951 and 5.432 for pH. The overall results demonstrate that it is feasible to non-invasively determine SSC and pH of grape juice using Vis-NIR spectroscopy, UVE-SPA is a powerful tool to select the efficient variables, and UVE-SPA-MLR is simple and excellent for the spectral calibration.

摘要

几种波长变量选择算法被比较,以分析可见近红外(Vis-NIR)光谱,用于非侵入式定量测定葡萄汁中的可溶性固形物含量(SSC)和 pH 值。为了消除无用变量并提高信号/噪声比,首先通过不同的信息量变量选择方法计算预处理的全谱。无信息变量消除(UVE)比区间偏最小二乘法(iPLS)、协同区间偏最小二乘法(siPLS)和反向区间偏最小二乘法(biPLS)更好。进一步采用连续投影算法(SPA)进行变量选择。最终,分别得到了 9 个和 11 个变量,用于 SSC 和 pH 分析。在 SSC 和 pH 分析中,UVE-SPA-PLS 模型的结果优于 SPA-PLS 模型,这表明在 SPA 之前执行 UVE 是必要的,这可以减少计算时间并提高模型的性能。此外,还比较了两种常用的校准方法,PLS 和多元线性回归(MLR)。在 SSC 和 pH 分析中,UVE-SPA-MLR 得到的结果优于 UVE-SPA-PLS。UVE-SPA-MLR 得到的预测集决定系数(r(p)(2))和残差预测偏差(RPD)分别为 SSC 为 0.979 和 6.971,pH 为 0.951 和 5.432。总的结果表明,使用 Vis-NIR 光谱非侵入式测定葡萄汁的 SSC 和 pH 是可行的,UVE-SPA 是选择有效变量的有力工具,UVE-SPA-MLR 简单且非常适合光谱校准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验