文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于可见与近红外光谱的水稻穗颈瘟病情等级分类研究

[Study on disease level classification of rice panicle blast based on visible and near infrared spectroscopy].

作者信息

Di Wu, Cao Fang, Zhang Hao, Sun Guang-Ming, Feng Lei, He Yong

机构信息

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, China.

出版信息

Guang Pu Xue Yu Guang Pu Fen Xi. 2009 Dec;29(12):3295-9.


DOI:
PMID:20210154
Abstract

Visible and near infrared (Vis-NIR) spectroscopy was used to fast and non-destructively classify the disease levels of rice panicle blast. Reflectance spectra between 325 and 1 075 nm were measured. Kennard-Stone algorithm was operated to separate samples into calibration and prediction sets. Different spectral pretreatment methods, including standard normal variate (SNV) and multiplicative scatter correction (MSC), were used for the spectral pretreatment before further spectral analysis. A hybrid wavelength variable selection method which is combined with uninformative variable elimination (UVE) and successive projections algorithm (SPA) was operated to select effective wavelength variables from original spectra, SNV pretreated spectra and MSC pretreated spectra, respectively. UVE was firstly operated to remove uninformative wavelength variables from the full-spectrum. Then SPA selected the effective wavelength variables with less colinearity after UVE. Least square-support vector machine (LS-SVM) was used as the calibration method for the spectral analysis in this study. The selected effective wavelengths were set as input variables of LS-SVM model. The LS-SVM model established based on SNV-UVE-SPA obtained the best results. Only six effective wavelengths (459, 546, 569, 590, 775 and 981 nm) were selected from the full-spectrum which has 600 wavelength variables by UVE-SPA, and their LS-SVM model's performance was further improved. For SNV-UVE-SPA-LS-SVM model, coefficient of determination for prediction set (R2(p)), root mean square error for prediction (RMSEP) and residual predictive deviation (RPD) were 0.979, 0.507 and 6.580, respectively. The overall results indicate that Vis-NIR spectroscopy is a feasible way to classify disease levels of rice panicle blast fast and non-destructively. UVE-SPA is an efficient variable selection method for the spectral analysis, and their selected effective wavelengths can represent the useful information of the full-spectrum and have higher signal/noise ratio and less colinearity.

摘要

可见近红外(Vis-NIR)光谱法被用于快速、无损地对水稻穗颈瘟的病害等级进行分类。测量了325至1075nm之间的反射光谱。采用肯纳德-斯通算法将样本分为校正集和预测集。在进一步进行光谱分析之前,使用了包括标准正态变量变换(SNV)和多元散射校正(MSC)在内的不同光谱预处理方法对光谱进行预处理。采用一种将无信息变量消除(UVE)和连续投影算法(SPA)相结合的混合波长变量选择方法,分别从原始光谱、SNV预处理光谱和MSC预处理光谱中选择有效波长变量。首先运用UVE从全光谱中去除无信息波长变量。然后,SPA在UVE之后选择共线性较低的有效波长变量。在本研究中,采用最小二乘支持向量机(LS-SVM)作为光谱分析的校正方法。将所选的有效波长设置为LS-SVM模型的输入变量。基于SNV-UVE-SPA建立的LS-SVM模型取得了最佳结果。通过UVE-SPA从具有600个波长变量的全光谱中仅选择了六个有效波长(459、546、569、590、775和981nm),并且其LS-SVM模型的性能得到了进一步提升。对于SNV-UVE-SPA-LS-SVM模型,预测集的决定系数(R2(p))、预测均方根误差(RMSEP)和剩余预测偏差(RPD)分别为0.979、0.507和6.580。总体结果表明,可见近红外光谱法是一种快速、无损地对水稻穗颈瘟病害等级进行分类的可行方法。UVE-SPA是一种用于光谱分析的有效变量选择方法,其所选的有效波长能够代表全光谱的有用信息,具有较高的信噪比和较低的共线性。

相似文献

[1]
[Study on disease level classification of rice panicle blast based on visible and near infrared spectroscopy].

Guang Pu Xue Yu Guang Pu Fen Xi. 2009-12

[2]
Hybrid variable selection in visible and near-infrared spectral analysis for non-invasive quality determination of grape juice.

Anal Chim Acta. 2009-11-26

[3]
[Characteristic wavelengths selection of soluble solids content of pear based on NIR spectral and LS-SVM].

Guang Pu Xue Yu Guang Pu Fen Xi. 2014-8

[4]
[Application of successive projections algorithm to nondestructive determination of total amino acids in oilseed rape leaves].

Guang Pu Xue Yu Guang Pu Fen Xi. 2009-11

[5]
[Non-invasive measurement of water content in engine lubricant using visible and near infrared spectroscopy].

Guang Pu Xue Yu Guang Pu Fen Xi. 2010-8

[6]
Exploring near and midinfrared spectroscopy to predict trace iron and zinc contents in powdered milk.

J Agric Food Chem. 2009-3-11

[7]
[Measurement of Soil Total Nitrogen Using Near Infrared Spectroscopy Combined with RCA and SPA].

Guang Pu Xue Yu Guang Pu Fen Xi. 2015-5

[8]
[Determination of soluble solids content in Nanfeng Mandarin by Vis/NIR spectroscopy and UVE-ICA-LS-SVM].

Guang Pu Xue Yu Guang Pu Fen Xi. 2013-12

[9]
[Analysis of transgenic and non-transgenic rice leaves using visible/near-infrared spectroscopy].

Guang Pu Xue Yu Guang Pu Fen Xi. 2012-2

[10]
Determination of alpha-linolenic acid and linoleic acid in edible oils using near-infrared spectroscopy improved by wavelet transform and uninformative variable elimination.

Anal Chim Acta. 2009-2-23

引用本文的文献

[1]
Kiwi Plant Canker Diagnosis Using Hyperspectral Signal Processing and Machine Learning: Detecting Symptoms Caused by pv. .

Plants (Basel). 2022-8-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索