Suppr超能文献

非洲爪蟾 skip 调节 Wnt/β-catenin 信号通路并在神经嵴诱导中发挥作用。

Xenopus skip modulates Wnt/beta-catenin signaling and functions in neural crest induction.

机构信息

School of Life Sciences, Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing 100084, China.

出版信息

J Biol Chem. 2010 Apr 2;285(14):10890-901. doi: 10.1074/jbc.M109.058347. Epub 2010 Jan 26.

Abstract

The beta-catenin-lymphoid enhancer factor (LEF) protein complex is the key mediator of canonical Wnt signaling and initiates target gene transcription upon ligand stimulation. In addition to beta-catenin and LEF themselves, many other proteins have been identified as necessary cofactors. Here we report that the evolutionally conserved splicing factor and transcriptional co-regulator, SKIP/SNW/NcoA62, forms a ternary complex with LEF1 and HDAC1 and mediates the repression of target genes. Loss-of-function studies showed that SKIP is obligatory for Wnt signaling-induced target gene transactivation, suggesting an important role of SKIP in the canonical Wnt signaling. Consistent with its involvement in beta-catenin signaling, the C-terminally truncated forms of SKIP are able to stabilize beta-catenin and enhance Wnt signaling. In Xenopus embryos, both overexpression and knockdown of Skip lead to reduced neural crest induction, consistent with down-regulated Wnt signaling in both cases. Our results indicate that SKIP is a novel component of the beta-catenin transcriptional complex.

摘要

β-连环蛋白-淋巴增强因子(LEF)蛋白复合物是经典 Wnt 信号转导的关键介质,在配体刺激下启动靶基因转录。除了β-连环蛋白和 LEF 本身,许多其他蛋白质已被鉴定为必需的辅助因子。在这里,我们报告称,进化上保守的剪接因子和转录共调节剂 SKIP/SNW/NcoA62 与 LEF1 和 HDAC1 形成三元复合物,并介导靶基因的抑制。功能丧失研究表明,SKIP 是 Wnt 信号诱导的靶基因反式激活所必需的,这表明 SKIP 在经典 Wnt 信号转导中具有重要作用。与它参与β-连环蛋白信号一致,SKIP 的 C 端截断形式能够稳定β-连环蛋白并增强 Wnt 信号。在非洲爪蟾胚胎中,过表达和敲低 Skip 都会导致神经嵴诱导减少,这与两种情况下 Wnt 信号下调一致。我们的结果表明,SKIP 是 β-连环蛋白转录复合物的一个新组件。

相似文献

1
Xenopus skip modulates Wnt/beta-catenin signaling and functions in neural crest induction.
J Biol Chem. 2010 Apr 2;285(14):10890-901. doi: 10.1074/jbc.M109.058347. Epub 2010 Jan 26.
2
A novel Wilms tumor 1 (WT1) target gene negatively regulates the WNT signaling pathway.
J Biol Chem. 2010 May 7;285(19):14585-93. doi: 10.1074/jbc.M109.094334. Epub 2010 Mar 10.
3
Genome-wide identification of Wnt/β-catenin transcriptional targets during Xenopus gastrulation.
Dev Biol. 2017 Jun 15;426(2):165-175. doi: 10.1016/j.ydbio.2016.03.021. Epub 2016 Apr 16.
4
ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer.
Cancer Res. 2013 Oct 1;73(19):6068-79. doi: 10.1158/0008-5472.CAN-13-0882. Epub 2013 Aug 1.
8
Dapper1 is a nucleocytoplasmic shuttling protein that negatively modulates Wnt signaling in the nucleus.
J Biol Chem. 2008 Dec 19;283(51):35679-88. doi: 10.1074/jbc.M804088200. Epub 2008 Oct 20.
9
Jerky/Earthbound facilitates cell-specific Wnt/Wingless signalling by modulating β-catenin-TCF activity.
EMBO J. 2011 Apr 20;30(8):1444-58. doi: 10.1038/emboj.2011.67. Epub 2011 Mar 11.

引用本文的文献

1
Mutations in the spliceosomal gene SNW1 cause neurodevelopment disorders with microcephaly.
J Clin Invest. 2025 Jul 3;135(18). doi: 10.1172/JCI186119. eCollection 2025 Sep 16.
2
Digital spatial profiling of segmental outflow regions in trabecular meshwork reveals a role for ADAM15.
PLoS One. 2024 Feb 23;19(2):e0298802. doi: 10.1371/journal.pone.0298802. eCollection 2024.
3
Wnt Signaling in Neural Crest Ontogenesis and Oncogenesis.
Cells. 2019 Sep 29;8(10):1173. doi: 10.3390/cells8101173.
5
SNW1 is a prognostic biomarker in prostate cancer.
Diagn Pathol. 2019 May 1;14(1):33. doi: 10.1186/s13000-019-0810-8.
6
Williams Syndrome, Human Self-Domestication, and Language Evolution.
Front Psychol. 2019 Mar 18;10:521. doi: 10.3389/fpsyg.2019.00521. eCollection 2019.
7
A transcriptional coregulator, SPIN·DOC, attenuates the coactivator activity of Spindlin1.
J Biol Chem. 2017 Dec 22;292(51):20808-20817. doi: 10.1074/jbc.M117.814913. Epub 2017 Oct 23.
8
10
Dkk2/Frzb in the dermal papillae regulates feather regeneration.
Dev Biol. 2014 Mar 15;387(2):167-78. doi: 10.1016/j.ydbio.2014.01.010. Epub 2014 Jan 21.

本文引用的文献

1
Wnt/beta-catenin signaling: components, mechanisms, and diseases.
Dev Cell. 2009 Jul;17(1):9-26. doi: 10.1016/j.devcel.2009.06.016.
3
Fgf8a induces neural crest indirectly through the activation of Wnt8 in the paraxial mesoderm.
Development. 2008 Dec;135(23):3903-10. doi: 10.1242/dev.026229.
4
A gene regulatory network orchestrates neural crest formation.
Nat Rev Mol Cell Biol. 2008 Jul;9(7):557-68. doi: 10.1038/nrm2428. Epub 2008 Jun 4.
5
Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling.
Cell. 2008 Apr 18;133(2):340-53. doi: 10.1016/j.cell.2008.01.052.
7
Wnt/beta-catenin signaling in development and disease.
Cell. 2006 Nov 3;127(3):469-80. doi: 10.1016/j.cell.2006.10.018.
8
Development of the neural crest: achieving specificity in regulatory pathways.
Curr Opin Cell Biol. 2006 Dec;18(6):698-703. doi: 10.1016/j.ceb.2006.09.003. Epub 2006 Oct 9.
9
Frizzled7 mediates canonical Wnt signaling in neural crest induction.
Dev Biol. 2006 Oct 1;298(1):285-98. doi: 10.1016/j.ydbio.2006.06.037. Epub 2006 Jun 27.
10
Neural induction in Xenopus requires inhibition of Wnt-beta-catenin signaling.
Dev Biol. 2006 Oct 1;298(1):71-86. doi: 10.1016/j.ydbio.2006.06.015. Epub 2006 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验