Suppr超能文献

肝细胞癌中拷贝数异常的高分辨率图谱绘制和靶基因的鉴定。

High-resolution mapping of copy number aberrations and identification of target genes in hepatocellular carcinoma.

机构信息

Department of Surgery, Teikyo University School of Medicine University Hospital, Mizonokuchi, Kawasaki, Japan.

出版信息

Biosci Trends. 2007 Aug;1(1):26-32.

Abstract

Hepatocarcinogenesis involves complex combinations of molecular events, such as genetic aberrations, epigenetic changes, and alterations in gene expression. To elucidate the mechanism of hepatocarcinogenesis, it is necessary to reconstruct these molecular events at each level. This article presents a review of copy number analyses of hepatocellular carcinoma (HCC) using traditional comparative genomic hybridization (CGH), arraybased CGH (aCGH), and single nucleotide polymorphism (SNP) arrays. A number of studies have applied CGH technology for copy number analysis of HCC and have indicated the significance of correlations of frequent genomic aberrations with various clinicopathological parameters, prediction of recurrence and prognosis, and treatment selection, followed by comprehensive genomic analysis using aCGH with much higher resolution. Furthermore, we present our data regarding genomic aberrations of HCC obtained using the Genome Imbalance Map (GIM) algorithm, which simultaneously detects DNA copy number alterations and loss of heterozygosity using SNP arrays, and the Expression Imbalance Map (EIM) algorithm, which detects mRNA expression imbalance correlated with chromosomal regions. Using these two algorithms, we integrated the expression profiles, locus information, and genomic aberrations in a systematic manner, which is effective for detecting structural genomic abnormalities, such as chromosomal gains and losses, and showed that gene expression profiles are subject to chromosomal bias.

摘要

肝癌的发生涉及到复杂的分子事件组合,如遗传异常、表观遗传改变和基因表达的改变。为了阐明肝癌发生的机制,有必要在各个层面重建这些分子事件。本文综述了使用传统比较基因组杂交 (CGH)、基于阵列的 CGH (aCGH) 和单核苷酸多态性 (SNP) 阵列对肝细胞癌 (HCC) 的拷贝数分析。许多研究已经应用 CGH 技术对 HCC 的拷贝数进行了分析,并表明了频繁的基因组异常与各种临床病理参数、复发和预后的预测以及治疗选择的相关性的重要性,随后使用具有更高分辨率的 aCGH 进行了全面的基因组分析。此外,我们还介绍了使用 SNP 阵列同时检测 DNA 拷贝数改变和杂合性丢失的基因组不平衡图谱 (GIM) 算法以及检测与染色体区域相关的 mRNA 表达失衡的表达不平衡图谱 (EIM) 算法获得的 HCC 基因组异常数据。使用这两种算法,我们以系统的方式整合了表达谱、基因座信息和基因组异常,这对于检测结构基因组异常(如染色体增益和缺失)非常有效,并表明基因表达谱受到染色体偏倚的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验