Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo W L, Chen C, Zhai Y, Dairkee S H, Ljung B M, Gray J W, Albertson D G
Cancer Genetics Program, UCSF Cancer Center, University of California San Francisco, 94143-0808, USA.
Nat Genet. 1998 Oct;20(2):207-11. doi: 10.1038/2524.
Gene dosage variations occur in many diseases. In cancer, deletions and copy number increases contribute to alterations in the expression of tumour-suppressor genes and oncogenes, respectively. Developmental abnormalities, such as Down, Prader Willi, Angelman and Cri du Chat syndromes, result from gain or loss of one copy of a chromosome or chromosomal region. Thus, detection and mapping of copy number abnormalities provide an approach for associating aberrations with disease phenotype and for localizing critical genes. Comparative genomic hybridization (CGH) was developed for genome-wide analysis of DNA sequence copy number in a single experiment. In CGH, differentially labelled total genomic DNA from a 'test' and a 'reference' cell population are cohybridized to normal metaphase chromosomes, using blocking DNA to suppress signals from repetitive sequences. The resulting ratio of the fluorescence intensities at a location on the 'cytogenetic map', provided by the chromosomes, is approximately proportional to the ratio of the copy numbers of the corresponding DNA sequences in the test and reference genomes. CGH has been broadly applied to human and mouse malignancies. The use of metaphase chromosomes, however, limits detection of events involving small regions (of less than 20 Mb) of the genome, resolution of closely spaced aberrations and linking ratio changes to genomic/genetic markers. Therefore, more laborious locus-by-locus techniques have been required for higher resolution studies. Hybridization to an array of mapped sequences instead of metaphase chromosomes could overcome the limitations of conventional CGH (ref. 6) if adequate performance could be achieved. Copy number would be related to the test/reference fluorescence ratio on the array targets, and genomic resolution could be determined by the map distance between the targets, or by the length of the cloned DNA segments. We describe here our implementation of array CGH. We demonstrate its ability to measure copy number with high precision in the human genome, and to analyse clinical specimens by obtaining new information on chromosome 20 aberrations in breast cancer.
基因剂量变异在许多疾病中都会出现。在癌症中,基因缺失和拷贝数增加分别导致肿瘤抑制基因和癌基因表达的改变。发育异常,如唐氏综合征、普拉德-威利综合征、天使综合征和猫叫综合征,是由一条染色体或染色体区域的一个拷贝的增加或缺失引起的。因此,检测和定位拷贝数异常为将畸变与疾病表型相关联以及定位关键基因提供了一种方法。比较基因组杂交(CGH)是为在单个实验中对DNA序列拷贝数进行全基因组分析而开发的。在CGH中,来自“测试”和“参考”细胞群体的差异标记的总基因组DNA与正常中期染色体共杂交,使用封闭DNA来抑制来自重复序列的信号。由染色体提供的“细胞遗传图谱”上某一位置的荧光强度的最终比值大约与测试基因组和参考基因组中相应DNA序列的拷贝数比值成正比。CGH已广泛应用于人类和小鼠恶性肿瘤。然而,中期染色体的使用限制了对涉及基因组小区域(小于20 Mb)事件的检测、对紧密间隔畸变的分辨率以及将比值变化与基因组/遗传标记的关联。因此,对于更高分辨率的研究,需要更费力的逐个基因座技术。如果能够实现足够的性能,与中期染色体相比,与一系列定位序列杂交可以克服传统CGH的局限性(参考文献6)。拷贝数将与阵列靶标上的测试/参考荧光比值相关,并且基因组分辨率可以由靶标之间的图谱距离或克隆DNA片段的长度来确定。我们在此描述我们的阵列CGH实施方案。我们展示了其在人类基因组中高精度测量拷贝数的能力,以及通过获取乳腺癌中20号染色体畸变的新信息来分析临床标本的能力。