Suppr超能文献

Chemical activation of thin-fiber phrenic afferents. 2. Cardiovascular responses.

作者信息

Hussain S N, Chatillon A, Comtois A, Roussos C, Magder S

机构信息

Critical Care Division, Royal Victoria Hospital, Montreal, Quebec, Canada.

出版信息

J Appl Physiol (1985). 1991 Jan;70(1):77-86. doi: 10.1152/jappl.1991.70.1.77.

Abstract

To assess the effects of groups III and IV (thin-fiber) phrenic afferents on arterial pressure, heart rate, and distribution of cardiac output, we injected capsaicin into phrenic arteries of in situ isolated and innervated left diaphragms of dogs anesthetized with chloralose, vagotomized, and mechanically ventilated. Blood flow in the ascending aorta, common carotid, renal, superior mesenteric, and femoral arteries was measured by electromagnetic and Doppler flow probes. Injection of 1 mg capsaicin into the left phrenic artery produced congruent to 15% increase in mean arterial pressure and congruent to 7% increase in heart rate with no change in aortic flow. Phrenic arterial flow decreased by 64%, renal arterial flow by 16%, and superior mesenteric arterial flow by 10%, whereas carotid flow increased by 13% and flow to the right gastrocnemius muscle did not change. Mean arterial pressure, heart rate, and blood flow distribution (with the exception of the decline in phrenic blood flow) returned to baseline within 60 s of the injection. Injection of 1.5 mg capsaicin into the right isolated and innervated gastrocnemius produced congruent to 35% increase in mean arterial pressure, 17% rise in heart rate, and no change in aortic blood flow. Phrenic and carotid arterial flow rose by 240 and 41%, respectively, whereas renal and superior mesenteric flow declined by 50 and 20%, respectively. In conclusion, thin-fiber phrenic afferents have an excitatory effect on arterial pressure and heart rate. They redistribute blood flow away from the renal and intestinal vascular beds and toward the carotid vascular bed. On the other hand, the cardiovascular reflex from thin-fiber phrenic afferents seems less potent than that from limb muscle afferents.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验