Institute of Cell Signalling, School of Biomedical Sciences, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
Br J Pharmacol. 2010 Feb;159(4):772-86. doi: 10.1111/j.1476-5381.2009.00488.x. Epub 2010 Jan 26.
The introduction of fluorescence-based techniques, and in particular the development of fluorescent ligands, has allowed the study of G protein-coupled receptor pharmacology at the single cell and single molecule level. This study evaluated how the physicochemical nature of the linker and the fluorophore affected the pharmacological properties of fluorescent agonists and antagonists.
Chinese hamster ovary cells stably expressing the human adenosine A(1) receptor and a cyclic 3',5' adenosine monophosphate response element-secreted placental alkaline phosphatase (CRE-SPAP) reporter gene, together with whole cell [(3)H]-8-cyclopentyl-1,3-dipropylxanthine (DPCPX) radioligand binding, were used to evaluate the pharmacological properties of a range of fluorescent ligands based on the antagonist xanthine amine congener (XAC) and the agonist 5' (N-ethylcarboxamido) adenosine (NECA).
Derivatives of NECA and XAC with different fluorophores, but equivalent linker length, showed significant differences in their binding properties to the adenosine A(1) receptor. The BODIPY 630/650 derivatives had the highest affinity. Linker length also affected the pharmacological properties, depending on the fluorophore used. Particularly in fluorescent agonists, higher agonist potency could be achieved with large or small linkers for dansyl and BODIPY 630/650 derivatives, respectively.
The pharmacology of a fluorescent ligand was critically influenced by both the fluorophore and the associated linker. Furthermore, our data strongly suggest that the physicochemical properties of the fluorophore/linker pairing determine where in the environment of the target receptor the fluorophore is placed, and this, together with the environmental sensitivity of the resulting fluorescence, may finally decide its utility as a fluorescent probe.
荧光技术的引入,特别是荧光配体的发展,使得人们能够在单细胞和单分子水平上研究 G 蛋白偶联受体药理学。本研究评估了连接子和荧光团的物理化学性质如何影响荧光激动剂和拮抗剂的药理学特性。
使用稳定表达人腺苷 A(1)受体和环状 3',5' 腺苷单磷酸反应元件-分泌型胎盘碱性磷酸酶 (CRE-SPAP)报告基因的中国仓鼠卵巢细胞,以及全细胞[3H]-8-环戊基-1,3-二丙基黄嘌呤 (DPCPX) 放射性配体结合,评估了一系列基于拮抗剂黄嘌呤胺同系物 (XAC) 和激动剂 5' (N-乙基羧酰胺基) 腺苷 (NECA) 的荧光配体的药理学特性。
具有不同荧光团但等效连接子长度的 NECA 和 XAC 衍生物在与腺苷 A(1)受体的结合特性上表现出显著差异。BODIPY 630/650 衍生物具有最高的亲和力。连接子长度也会影响药理学特性,具体取决于所用的荧光团。特别是在荧光激动剂中,对于丹磺酰基和 BODIPY 630/650 衍生物,较大或较小的连接子可分别实现更高的激动剂效力。
荧光配体的药理学特性受到荧光团和相关连接子的共同影响。此外,我们的数据强烈表明,荧光团/连接子对的物理化学性质决定了荧光团在靶受体环境中的位置,并且这与荧光产生的环境敏感性一起,可能最终决定其作为荧光探针的实用性。