Key Laboratory of Intelligent Information Processing of Chinese Academy Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China.
IEEE Trans Image Process. 2010 May;19(5):1349-61. doi: 10.1109/TIP.2010.2041397. Epub 2010 Jan 26.
Gabor features have been known to be effective for face recognition. However, only a few approaches utilize phase feature and they usually perform worse than those using magnitude feature. To investigate the potential of Gabor phase and its fusion with magnitude for face recognition, in this paper, we first propose local Gabor XOR patterns (LGXP), which encodes the Gabor phase by using the local XOR pattern (LXP) operator. Then, we introduce block-based Fisher's linear discriminant (BFLD) to reduce the dimensionality of the proposed descriptor and at the same time enhance its discriminative power. Finally, by using BFLD, we fuse local patterns of Gabor magnitude and phase for face recognition. We evaluate our approach on FERET and FRGC 2.0 databases. In particular, we perform comparative experimental studies of different local Gabor patterns. We also make a detailed comparison of their combinations with BFLD, as well as the fusion of different descriptors by using BFLD. Extensive experimental results verify the effectiveness of our LGXP descriptor and also show that our fusion approach outperforms most of the state-of-the-art approaches.
Gabor 特征已被证明在人脸识别中非常有效。然而,只有少数方法利用相位特征,而且它们的性能通常不如使用幅度特征的方法好。为了研究 Gabor 相位及其与幅度的融合在人脸识别中的潜力,在本文中,我们首先提出了局部 Gabor XOR 模式(LGXP),它使用局部异或模式(LXP)算子对 Gabor 相位进行编码。然后,我们引入了基于块的 Fisher 线性判别(BFLD)来降低所提出描述符的维数,同时增强其判别能力。最后,通过使用 BFLD,我们融合了 Gabor 幅度和相位的局部模式进行人脸识别。我们在 FERET 和 FRGC 2.0 数据库上评估了我们的方法。特别是,我们对不同的局部 Gabor 模式进行了对比实验研究。我们还详细比较了它们与 BFLD 的组合,以及使用 BFLD 融合不同描述符的情况。广泛的实验结果验证了我们的 LGXP 描述符的有效性,并且表明我们的融合方法优于大多数最先进的方法。