Suppr超能文献

利用 CT 图像对 COVID-19 肺部感染严重程度进行识别和分类的 Remora Namib 甲虫优化深度学习

Remora Namib Beetle Optimization Enabled Deep Learning for Severity of COVID-19 Lung Infection Identification and Classification Using CT Images.

机构信息

School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India.

出版信息

Sensors (Basel). 2023 Jun 3;23(11):5316. doi: 10.3390/s23115316.

Abstract

Coronavirus disease 2019 (COVID-19) has seen a crucial outburst for both females and males worldwide. Automatic lung infection detection from medical imaging modalities provides high potential for increasing the treatment for patients to tackle COVID-19 disease. COVID-19 detection from lung CT images is a rapid way of diagnosing patients. However, identifying the occurrence of infectious tissues and segmenting this from CT images implies several challenges. Therefore, efficient techniques termed as Remora Namib Beetle Optimization_ Deep Quantum Neural Network (RNBO_DQNN) and RNBO_Deep Neuro Fuzzy Network (RNBO_DNFN) are introduced for the identification as well as classification of COVID-19 lung infection. Here, the pre-processing of lung CT images is performed utilizing an adaptive Wiener filter, whereas lung lobe segmentation is performed employing the Pyramid Scene Parsing Network (PSP-Net). Afterwards, feature extraction is carried out wherein features are extracted for the classification phase. In the first level of classification, DQNN is utilized, tuned by RNBO. Furthermore, RNBO is designed by merging the Remora Optimization Algorithm (ROA) and Namib Beetle Optimization (NBO). If a classified output is COVID-19, then the second-level classification is executed using DNFN for further classification. Additionally, DNFN is also trained by employing the newly proposed RNBO. Furthermore, the devised RNBO_DNFN achieved maximum testing accuracy, with TNR and TPR obtaining values of 89.4%, 89.5% and 87.5%.

摘要

2019 年冠状病毒病(COVID-19)在全球范围内对男性和女性都产生了重大影响。从医学成像模式中自动检测肺部感染为提高患者对 COVID-19 疾病的治疗效果提供了巨大的潜力。从肺部 CT 图像中检测 COVID-19 是一种快速诊断患者的方法。然而,识别感染组织并将其从 CT 图像中分割出来存在一些挑战。因此,引入了称为 Remora Namib Beetle Optimization_Deep Quantum Neural Network(RNBO_DQNN)和 RNBO_Deep Neuro Fuzzy Network(RNBO_DNFN)的高效技术,用于识别和分类 COVID-19 肺部感染。在这里,使用自适应 Wiener 滤波器对肺部 CT 图像进行预处理,而使用 Pyramid Scene Parsing Network(PSP-Net)进行肺叶分割。然后,进行特征提取,为分类阶段提取特征。在分类的第一级,使用由 RNBO 调整的 DQNN。此外,通过合并 Remora Optimization Algorithm(ROA)和 Namib Beetle Optimization(NBO)设计了 RNBO。如果分类输出为 COVID-19,则使用 DNFN 执行二级分类,以进行进一步分类。此外,还使用新提出的 RNBO 对 DNFN 进行了训练。此外,所设计的 RNBO_DNFN 实现了最高的测试准确性,TNR 和 TPR 的值分别为 89.4%、89.5%和 87.5%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/412c/10256114/3a20593ab835/sensors-23-05316-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验