Department of Cell and Neurobiology, University of Southern California, Los Angeles, California 90089-9142, USA.
Am J Physiol Regul Integr Comp Physiol. 2010 Apr;298(4):R851-61. doi: 10.1152/ajpregu.00002.2010. Epub 2010 Jan 27.
One-hundred years ago, Starling articulated the interdependence of renal control of circulating blood volume and effective cardiac performance. During the past 25 years, the molecular mechanisms responsible for the interdependence of blood pressure (BP), extracellular fluid volume (ECFV), the renin-angiotensin system (RAS), and sympathetic nervous system (SNS) have begun to be revealed. These variables all converge on regulation of renal proximal tubule (PT) sodium transport. The PT reabsorbs two-thirds of the filtered Na(+) and volume at baseline. This fraction is decreased when BP or perfusion pressure is increased, during a high-salt diet (elevated ECFV), and during inhibition of the production of ANG II; conversely, this fraction is increased by ANG II, SNS activation, and a low-salt diet. These variables all regulate the distribution of the Na(+)/H(+) exchanger isoform 3 (NHE3) and the Na(+)-phosphate cotransporter (NaPi2), along the apical microvilli of the PT. Natriuretic stimuli provoke the dynamic redistribution of these transporters along with associated regulators, molecular motors, and cytoskeleton-associated proteins to the base of the microvilli. The lipid raft-associated NHE3 remains at the base, and the nonraft-associated NaPi2 is endocytosed, culminating in decreased Na(+) transport and increased PT flow rate. Antinatriuretic stimuli return the same transporters and regulators to the body of the microvilli associated with an increase in transport activity and decrease in PT flow rate. In summary, ECFV and BP homeostasis are, at least in part, maintained by continuous and acute redistribution of transporter complexes up and down the PT microvilli, which affect regulation of PT sodium reabsorption in response to fluctuations in ECFV, BP, SNS, and RAS.
一百年前,Starling 阐明了肾脏对循环血量和有效心功能的控制是相互依存的。在过去的 25 年中,与血压(BP)、细胞外液量(ECFV)、肾素-血管紧张素系统(RAS)和交感神经系统(SNS)的相互依存有关的分子机制已经开始被揭示。这些变量都集中在调节肾近端小管(PT)的钠转运上。PT 在基础状态下吸收三分之二的过滤钠(Na+)和体积。当血压或灌注压升高、高盐饮食(升高的 ECFV)和抑制 ANG II 产生时,这一比例会降低;相反,ANG II、SNS 激活和低盐饮食会增加这一比例。这些变量都调节 Na(+)/H(+)交换体 3(NHE3)和 Na(+)-磷酸共转运体(NaPi2)在 PT 顶端微绒毛中的分布。利钠刺激促使这些转运体与相关调节剂、分子马达和细胞骨架相关蛋白沿着 PT 微绒毛的底部进行动态再分布。脂质筏相关的 NHE3 仍留在底部,非筏相关的 NaPi2 被内吞,导致 Na+转运减少和 PT 流速增加。抗利钠刺激使相同的转运体和调节剂回到微绒毛的体部,与转运活性增加和 PT 流速降低相关。总之,细胞外液量和血压的稳态至少部分是通过不断的急性转运体复合物在 PT 微绒毛上的上下分布来维持的,这影响了 PT 钠重吸收对细胞外液量、血压、SNS 和 RAS 波动的调节。