Suppr超能文献

对舌部味觉刺激的反应潜伏期可区分膝状神经节内的神经元类型。

Response latency to lingual taste stimulation distinguishes neuron types within the geniculate ganglion.

作者信息

Breza Joseph M, Nikonov Alexandre A, Contreras Robert J

机构信息

Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA.

出版信息

J Neurophysiol. 2010 Apr;103(4):1771-84. doi: 10.1152/jn.00785.2009. Epub 2010 Jan 27.

Abstract

The purpose of this study was to investigate the role of response latency in discrimination of chemical stimuli by geniculate ganglion neurons in the rat. Accordingly, we recorded single-cell 5-s responses from geniculate ganglion neurons (n = 47) simultaneously with stimulus-evoked summated potentials (electrogustogram; EGG) from the anterior tongue to signal when the stimulus contacted the lingual epithelium. Artificial saliva served as the rinse solution and solvent for all stimuli [(0.5 M sucrose, 0.03-0.5 M NaCl, 0.01 M citric acid, and 0.02 M quinine hydrochloride (QHCl)], 0.1 M KCl as well as for 0.1 M NaCl +1 μM benzamil. Cluster analysis separated neurons into four groups (sucrose specialists, NaCl specialists, NaCl/QHCl generalists and acid generalists). Artificial saliva elevated spontaneous firing rate and response frequency of all neurons. As a rule, geniculate ganglion neurons responded with the highest frequency and shortest latency to their best stimulus with acid generalist the only exception. For specialist neurons and NaCl/QHCl generalists, the average response latency to the best stimulus was two to four times shorter than the latency to secondary stimuli. For NaCl-specialist neurons, response frequency increased and response latency decreased systematically with increasing NaCl concentration; benzamil significantly decreased NaCl response frequency and increased response latency. Acid-generalist neurons had the highest spontaneous firing rate and were the only group that responded consistently to citric acid and KCl. For many acid generalists, a citric-acid-evoked inhibition preceded robust excitation. We conclude that response latency may be an informative coding signal for peripheral chemosensory neurons.

摘要

本研究的目的是调查反应潜伏期在大鼠膝状神经节神经元对化学刺激辨别中的作用。因此,我们记录了膝状神经节神经元(n = 47)的单细胞5秒反应,同时记录了来自舌尖的刺激诱发的总和电位(电味觉图;EGG),以信号指示刺激何时接触舌上皮。人工唾液用作所有刺激物[(0.5 M蔗糖、0.03 - 0.5 M氯化钠、0.01 M柠檬酸和0.02 M盐酸奎宁(QHCl)]、0.1 M氯化钾以及0.1 M氯化钠 + 1 μM苯扎明的冲洗溶液和溶剂。聚类分析将神经元分为四组(蔗糖特异性神经元、氯化钠特异性神经元、氯化钠/盐酸奎宁通用型神经元和酸通用型神经元)。人工唾液提高了所有神经元的自发放电率和反应频率。通常,膝状神经节神经元对其最佳刺激的反应频率最高且潜伏期最短,酸通用型神经元是唯一的例外。对于特异性神经元和氯化钠/盐酸奎宁通用型神经元,对最佳刺激的平均反应潜伏期比对次要刺激的潜伏期短两到四倍。对于氯化钠特异性神经元,随着氯化钠浓度的增加,反应频率增加且反应潜伏期系统性缩短;苯扎明显著降低了氯化钠反应频率并增加了反应潜伏期。酸通用型神经元具有最高的自发放电率,并且是唯一对柠檬酸和氯化钾持续反应的组。对于许多酸通用型神经元,柠檬酸诱发的抑制先于强烈的兴奋。我们得出结论,反应潜伏期可能是外周化学感觉神经元的一个信息编码信号。

相似文献

1
Response latency to lingual taste stimulation distinguishes neuron types within the geniculate ganglion.
J Neurophysiol. 2010 Apr;103(4):1771-84. doi: 10.1152/jn.00785.2009. Epub 2010 Jan 27.
2
Gustatory neuron types in rat geniculate ganglion.
J Neurophysiol. 1999 Dec;82(6):2970-88. doi: 10.1152/jn.1999.82.6.2970.
3
Acetic acid modulates spike rate and spike latency to salt in peripheral gustatory neurons of rats.
J Neurophysiol. 2012 Nov;108(9):2405-18. doi: 10.1152/jn.00114.2012. Epub 2012 Aug 15.
4
Anion size modulates salt taste in rats.
J Neurophysiol. 2012 Mar;107(6):1632-48. doi: 10.1152/jn.00621.2011. Epub 2011 Dec 28.
5
Temperature modulates taste responsiveness and stimulates gustatory neurons in the rat geniculate ganglion.
J Neurophysiol. 2006 Feb;95(2):674-85. doi: 10.1152/jn.00793.2005. Epub 2005 Nov 2.
6
Gustatory responses of neurons in the nucleus of the solitary tract of behaving rats.
J Neurophysiol. 1991 Oct;66(4):1232-48. doi: 10.1152/jn.1991.66.4.1232.
8
Responses of single lingual nerve fibers to thermal and chemical stimulation.
Brain Res. 1998 Apr 20;790(1-2):224-35. doi: 10.1016/s0006-8993(98)00059-6.
10
Monosodium glutamate but not linoleic acid differentially activates gustatory neurons in the rat geniculate ganglion.
Chem Senses. 2007 Nov;32(9):833-46. doi: 10.1093/chemse/bjm052. Epub 2007 Aug 9.

引用本文的文献

1
Oral thermal processing in the gustatory cortex of awake mice.
Chem Senses. 2023 Jan 1;48. doi: 10.1093/chemse/bjad042.
2
Analysis of the rat chorda tympani nerve response to "super salty" sodium carbonate.
Chem Senses. 2023 Jan 1;48. doi: 10.1093/chemse/bjad015.
3
A Novel Mechanism for T1R-Independent Taste Responses to Concentrated Sugars.
J Neurosci. 2023 Feb 8;43(6):965-978. doi: 10.1523/JNEUROSCI.1760-22.2023. Epub 2023 Jan 9.
4
The elusive cephalic phase insulin response: triggers, mechanisms, and functions.
Physiol Rev. 2023 Apr 1;103(2):1423-1485. doi: 10.1152/physrev.00025.2022. Epub 2022 Nov 24.
6
Characteristics and Impact of the rNST GABA Network on Neural and Behavioral Taste Responses.
eNeuro. 2022 Oct 4;9(5). doi: 10.1523/ENEURO.0262-22.2022. Print 2022 Sep-Oct.
7
Variation in taste ganglion neuron morphology: insights into taste function and plasticity.
Curr Opin Physiol. 2021 Apr;20:134-139. doi: 10.1016/j.cophys.2020.12.011. Epub 2021 Jan 19.
8
Functional expression of TMEM16A in taste bud cells.
J Physiol. 2021 Aug;599(15):3697-3714. doi: 10.1113/JP281645. Epub 2021 Jun 28.
9
Variable Branching Characteristics of Peripheral Taste Neurons Indicates Differential Convergence.
J Neurosci. 2021 Jun 2;41(22):4850-4866. doi: 10.1523/JNEUROSCI.1935-20.2021. Epub 2021 Apr 19.
10
Enhancing GABAergic Tone in the Rostral Nucleus of the Solitary Tract Reconfigures Sensorimotor Neural Activity.
J Neurosci. 2021 Jan 20;41(3):489-501. doi: 10.1523/JNEUROSCI.0388-20.2020. Epub 2020 Nov 24.

本文引用的文献

1
Quality time: representation of a multidimensional sensory domain through temporal coding.
J Neurosci. 2009 Jul 22;29(29):9227-38. doi: 10.1523/JNEUROSCI.5995-08.2009.
2
Discrimination of taste qualities among mouse fungiform taste bud cells.
J Physiol. 2009 Sep 15;587(Pt 18):4425-39. doi: 10.1113/jphysiol.2009.175075. Epub 2009 Jul 21.
3
Parallel processing in mammalian taste buds?
Physiol Behav. 2009 Jul 14;97(5):604-8. doi: 10.1016/j.physbeh.2009.04.003. Epub 2009 Apr 14.
4
NaCl responsive taste cells in the mouse fungiform taste buds.
Neuroscience. 2009 Mar 17;159(2):795-803. doi: 10.1016/j.neuroscience.2008.12.052. Epub 2009 Jan 3.
5
Types of taste circuits synaptically linked to a few geniculate ganglion neurons.
J Comp Neurol. 2008 Dec 20;511(6):753-72. doi: 10.1002/cne.21869.
6
Cracking taste codes by tapping into sensory neuron impulse traffic.
Prog Neurobiol. 2008 Nov;86(3):245-63. doi: 10.1016/j.pneurobio.2008.09.003. Epub 2008 Sep 7.
7
Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.
J Physiol. 2008 Jun 15;586(12):2903-12. doi: 10.1113/jphysiol.2008.151233. Epub 2008 Apr 17.
8
Amiloride-sensitive channels in type I fungiform taste cells in mouse.
BMC Neurosci. 2008 Jan 2;9:1. doi: 10.1186/1471-2202-9-1.
9
The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse.
Chem Senses. 2008 Mar;33(3):243-54. doi: 10.1093/chemse/bjm083. Epub 2007 Dec 21.
10
Breadth of tuning and taste coding in mammalian taste buds.
J Neurosci. 2007 Oct 3;27(40):10840-8. doi: 10.1523/JNEUROSCI.1863-07.2007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验