Suppr超能文献

经验和 DFT GIAO 量子力学方法预测 (13)C 化学位移:竞争者还是合作者?

Empirical and DFT GIAO quantum-mechanical methods of (13)C chemical shifts prediction: competitors or collaborators?

机构信息

Advanced Chemistry Development, Moscow Department, 6 Akademik Bakulev St, 117513 Moscow, Russian Federation.

出版信息

Magn Reson Chem. 2010 Mar;48(3):219-29. doi: 10.1002/mrc.2571.

Abstract

The accuracy of (13)C chemical shift prediction by both DFT GIAO quantum-mechanical (QM) and empirical methods was compared using 205 structures for which experimental and QM-calculated chemical shifts were published in the literature. For these structures, (13)C chemical shifts were calculated using HOSE code and neural network (NN) algorithms developed within our laboratory. In total, 2531 chemical shifts were analyzed and statistically processed. It has been shown that, in general, QM methods are capable of providing similar but inferior accuracy to the empirical approaches, but quite frequently they give larger mean average error values. For the structural set examined in this work, the following mean absolute errors (MAEs) were found: MAE(HOSE) = 1.58 ppm, MAE(NN) = 1.91 ppm and MAE(QM) = 3.29 ppm. A strategy of combined application of both the empirical and DFT GIAO approaches is suggested. The strategy could provide a synergistic effect if the advantages intrinsic to each method are exploited.

摘要

使用文献中公布的 205 个结构的实验和量子力学(QM)计算的化学位移,比较了 DFT GIAO 量子力学(QM)和经验方法对(13)C 化学位移预测的准确性。对于这些结构,(13)C 化学位移使用 HOSE 代码和我们实验室开发的神经网络(NN)算法进行了计算。总共分析和统计处理了 2531 个化学位移。结果表明,一般来说,QM 方法能够提供与经验方法相似但精度较低的结果,但它们经常给出更大的平均绝对误差值。对于本文研究的结构集,发现以下平均绝对误差(MAE):HOSE 的 MAE = 1.58 ppm,NN 的 MAE = 1.91 ppm 和 QM 的 MAE = 3.29 ppm。建议采用经验和 DFT GIAO 方法相结合的应用策略。如果利用每种方法固有的优势,该策略可能会产生协同效应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验