Suppr超能文献

用直观的协作式移动应用程序重新定义化学信息学。

Redefining Cheminformatics with Intuitive Collaborative Mobile Apps.

作者信息

Clark Alex M, Ekins Sean, Williams Antony J

机构信息

Molecular Materials Informatics , 1900 St. Jacques #302, Montreal, Quebec, Canada H3J 2S1.

出版信息

Mol Inform. 2012 Aug;31(8):569-584. doi: 10.1002/minf.201200010. Epub 2012 Jul 4.

Abstract

The proliferation of mobile devices such as smartphones and tablet computers has recently been extended to include a growing ecosystem of increasingly sophisticated chemistry software packages, commonly known as apps. The capabilities that these apps can offer to the practicing chemist are approaching those of conventional desktop-based software, but apps tend to be focused on a relatively small range of tasks. To overcome this, chemistry apps must be able to seamlessly transfer data to other apps, and through the network to other devices, as well as to other platforms, such as desktops and servers, using documented file formats and protocols whenever possible. This article describes the development and state of the art with regard to chemistry-aware apps that make use of facile data interchange, and some of the scenarios in which these apps can be inserted into a chemical information workflow to increase productivity. A selection of contemporary apps is used to demonstrate their relevance to pharmaceutical research. Mobile apps represent a novel approach for delivery of cheminformatics tools to chemists and other scientists, and indications suggest that mobile devices represent a disruptive technology for drug discovery, as they have been to many other industries.

摘要

智能手机和平板电脑等移动设备的普及,近来已扩展至涵盖日益复杂的化学软件包这一不断发展的生态系统,这些软件包通常被称为应用程序。这些应用程序能够为执业化学家提供的功能已接近传统桌面软件,但应用程序往往专注于相对较小范围的任务。为克服这一问题,化学应用程序必须能够将数据无缝传输至其他应用程序,并通过网络传输至其他设备以及其他平台,如桌面和服务器,同时尽可能使用文档化的文件格式和协议。本文介绍了利用便捷数据交换的化学感知应用程序的发展和现状,以及这些应用程序可融入化学信息工作流程以提高生产力的一些场景。通过选用一些当代应用程序来展示它们与药物研究的相关性。移动应用程序为向化学家及其他科学家提供化学信息学工具提供了一种新颖的方式,种种迹象表明,移动设备对药物发现而言是一种颠覆性技术,就如同它们在许多其他行业所起到的作用一样。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b9d/3503261/43565ea8ebc6/minf0031-0569-fig001.jpg

相似文献

1
Redefining Cheminformatics with Intuitive Collaborative Mobile Apps.
Mol Inform. 2012 Aug;31(8):569-584. doi: 10.1002/minf.201200010. Epub 2012 Jul 4.
2
Mobile apps for chemistry in the world of drug discovery.
Drug Discov Today. 2011 Nov;16(21-22):928-39. doi: 10.1016/j.drudis.2011.09.002. Epub 2011 Sep 6.
3
Medical applications for pharmacists using mobile devices.
Ann Pharmacother. 2013 Jul-Aug;47(7-8):1088-95. doi: 10.1345/aph.1S035. Epub 2013 Jul 2.
4
Server-Focused Security Assessment of Mobile Health Apps for Popular Mobile Platforms.
J Med Internet Res. 2019 Jan 23;21(1):e9818. doi: 10.2196/jmir.9818.
6
Mobile expressive renderings: the state of the art.
IEEE Comput Graph Appl. 2013 May-Jun;33(3):22-31. doi: 10.1109/MCG.2013.20.
7
Clinical or gimmickal: The use and effectiveness of mobile mental health apps for treating anxiety and depression.
Aust N Z J Psychiatry. 2020 Jan;54(1):20-28. doi: 10.1177/0004867419876700. Epub 2019 Sep 25.
9
Using mobile technology with individuals with aphasia: native iPad features and everyday apps.
Semin Speech Lang. 2014 Feb;35(1):5-16. doi: 10.1055/s-0033-1362993. Epub 2014 Jan 21.

引用本文的文献

2
Human-Device Interaction in the Life Science Laboratory.
Adv Biochem Eng Biotechnol. 2022;182:83-113. doi: 10.1007/10_2021_183.
3
OPERA models for predicting physicochemical properties and environmental fate endpoints.
J Cheminform. 2018 Mar 8;10(1):10. doi: 10.1186/s13321-018-0263-1.
4
Open Source Bayesian Models. 1. Application to ADME/Tox and Drug Discovery Datasets.
J Chem Inf Model. 2015 Jun 22;55(6):1231-45. doi: 10.1021/acs.jcim.5b00143. Epub 2015 Jun 3.
5
App-etite for change.
J Comput Aided Mol Des. 2015 Apr;29(4):297-303. doi: 10.1007/s10822-014-9824-1. Epub 2014 Dec 17.
6
New target prediction and visualization tools incorporating open source molecular fingerprints for TB Mobile 2.0.
J Cheminform. 2014 Aug 4;6:38. doi: 10.1186/s13321-014-0038-2. eCollection 2014.
7
Bigger data, collaborative tools and the future of predictive drug discovery.
J Comput Aided Mol Des. 2014 Oct;28(10):997-1008. doi: 10.1007/s10822-014-9762-y. Epub 2014 Jun 19.
8
Bayesian models leveraging bioactivity and cytotoxicity information for drug discovery.
Chem Biol. 2013 Mar 21;20(3):370-8. doi: 10.1016/j.chembiol.2013.01.011.
9
TB Mobile: a mobile app for anti-tuberculosis molecules with known targets.
J Cheminform. 2013 Mar 6;5(1):13. doi: 10.1186/1758-2946-5-13.
10
Open Drug Discovery Teams: A Chemistry Mobile App for Collaboration.
Mol Inform. 2012 Aug;31(8):585-597. doi: 10.1002/minf.201200034. Epub 2012 Aug 6.

本文引用的文献

2
Accurate specification of molecular structures: the case for zero-order bonds and explicit hydrogen counting.
J Chem Inf Model. 2011 Dec 27;51(12):3149-57. doi: 10.1021/ci200488k. Epub 2011 Dec 8.
3
AUDocker LE: A GUI for virtual screening with AUTODOCK Vina.
BMC Res Notes. 2011 Oct 25;4:445. doi: 10.1186/1756-0500-4-445.
4
Open Babel: An open chemical toolbox.
J Cheminform. 2011 Oct 7;3:33. doi: 10.1186/1758-2946-3-33.
6
Mobile apps for chemistry in the world of drug discovery.
Drug Discov Today. 2011 Nov;16(21-22):928-39. doi: 10.1016/j.drudis.2011.09.002. Epub 2011 Sep 6.
7
Design, synthesis, and X-ray crystallographic analysis of a novel class of HIV-1 protease inhibitors.
J Med Chem. 2011 Oct 27;54(20):7176-83. doi: 10.1021/jm200778q. Epub 2011 Sep 26.
9
Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information.
J Comput Aided Mol Des. 2011 Jun;25(6):533-54. doi: 10.1007/s10822-011-9440-2. Epub 2011 Jun 10.
10
Multilevel Parallelization of AutoDock 4.2.
J Cheminform. 2011 Apr 28;3(1):12. doi: 10.1186/1758-2946-3-12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验