Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA.
Development. 2010 Mar;137(5):755-65. doi: 10.1242/dev.045757. Epub 2010 Jan 28.
Dysfunction of the ureter often leads to urine flow impairment from the kidney to the bladder, causing dilation of the ureter and/or renal pelvis. Six1 is a crucial regulator of renal development: mutations in human SIX1 cause branchio-oto-renal (BOR) syndrome and Six1(-/-) mice exhibit renal agenesis, although the ureter is present. It remains unclear whether Six1 plays a role in regulating ureter morphogenesis. We demonstrate here that Six1 is differentially expressed during ureter morphogenesis. It was expressed in undifferentiated smooth muscle (SM) progenitors, but was downregulated in differentiating SM cells (SMCs) and had disappeared by E18.5. In Six1(-/-) mice, the ureteral mesenchymal precursors failed to condense and differentiate into normal SMCs and showed increased cell death, indicating that Six1 is required for the maintenance and normal differentiation of SM progenitors. A delay in SMC differentiation was observed in Six1(-/-) ureters. A lack of Six1 in the ureter led to hydroureter and hydronephrosis without anatomical obstruction when kidney formation was rescued in Six1(-/-) embryos by specifically expressing Six1 in the metanephric mesenchyme, but not the ureter, under control of the Eya1 promoter. We show that Six1 and Tbx18 genetically interact to synergistically regulate SMC development and ureter function and that their gene products form a complex in cultured cells and in the developing ureter. Two missense mutations in SIX1 from BOR patients reduced or abolished SIX1-TBX18 complex formation. These findings uncover an essential role for Six1 in establishing a functionally normal ureter and provide new insights into the molecular basis of urinary tract malformations in BOR patients.
输尿管功能障碍常导致尿液从肾脏流向膀胱的过程受损,引起输尿管和/或肾盂扩张。Six1 是肾脏发育的关键调节因子:人类 SIX1 突变会导致 Branchio-Oto-Renal (BOR) 综合征,Six1(-/-) 小鼠表现出肾脏发育不全,尽管输尿管存在。Six1 是否在调节输尿管形态发生中发挥作用仍不清楚。我们在此证明 Six1 在输尿管形态发生过程中差异表达。它在未分化的平滑肌 (SM) 祖细胞中表达,但在分化的 SM 细胞 (SMCs) 中下调,并在 E18.5 时消失。在 Six1(-/-) 小鼠中,输尿管间充质前体未能凝聚并分化为正常的 SMC,并显示出增加的细胞死亡,表明 Six1 是维持和正常分化 SM 祖细胞所必需的。在 Six1(-/-) 输尿管中观察到 SMC 分化延迟。当通过在 Eya1 启动子的控制下特异性表达 Six1 来挽救 Six1(-/-) 胚胎中的肾脏形成时,Six1 在输尿管中的缺失导致输尿管积水和肾盂积水,而没有解剖学阻塞,但不是在输尿管中。我们表明,Six1 和 Tbx18 遗传相互作用以协同调节 SMC 发育和输尿管功能,并且它们的基因产物在培养细胞中和发育中的输尿管中形成复合物。来自 BOR 患者的 SIX1 的两个错义突变减少或消除了 SIX1-TBX18 复合物的形成。这些发现揭示了 Six1 在建立功能正常的输尿管中的重要作用,并为 BOR 患者的泌尿道畸形的分子基础提供了新的见解。