Suppr超能文献

尽其所能地快速运转:视觉皮层层状回路中尖峰动力学如何形成物体分组。

Running as fast as it can: how spiking dynamics form object groupings in the laminar circuits of visual cortex.

作者信息

Léveillé Jasmin, Versace Massimiliano, Grossberg Stephen

机构信息

Department of Cognitive and Neural Systems, Center for Adaptive Systems, Boston University, Boston, MA 02215, USA.

出版信息

J Comput Neurosci. 2010 Apr;28(2):323-46. doi: 10.1007/s10827-009-0211-1. Epub 2010 Jan 29.

Abstract

How spiking neurons cooperate to control behavioral processes is a fundamental problem in computational neuroscience. Such cooperative dynamics are required during visual perception when spatially distributed image fragments are grouped into emergent boundary contours. Perceptual grouping is a challenge for spiking cells because its properties of collinear facilitation and analog sensitivity occur in response to binary spikes with irregular timing across many interacting cells. Some models have demonstrated spiking dynamics in recurrent laminar neocortical circuits, but not how perceptual grouping occurs. Other models have analyzed the fast speed of certain percepts in terms of a single feedforward sweep of activity, but cannot explain other percepts, such as illusory contours, wherein perceptual ambiguity can take hundreds of milliseconds to resolve by integrating multiple spikes over time. The current model reconciles fast feedforward with slower feedback processing, and binary spikes with analog network-level properties, in a laminar cortical network of spiking cells whose emergent properties quantitatively simulate parametric data from neurophysiological experiments, including the formation of illusory contours; the structure of non-classical visual receptive fields; and self-synchronizing gamma oscillations. These laminar dynamics shed new light on how the brain resolves local informational ambiguities through the use of properly designed nonlinear feedback spiking networks which run as fast as they can, given the amount of uncertainty in the data that they process.

摘要

脉冲神经元如何协作以控制行为过程是计算神经科学中的一个基本问题。在视觉感知过程中,当空间分布的图像片段被组合成涌现的边界轮廓时,就需要这种协作动态。感知分组对脉冲细胞来说是一项挑战,因为其共线促进和模拟敏感性的特性是在许多相互作用的细胞中对具有不规则时间的二元脉冲做出反应时出现的。一些模型已经展示了递归层状新皮层回路中的脉冲动态,但没有说明感知分组是如何发生的。其他模型从单一的前馈活动扫描角度分析了某些感知的快速速度,但无法解释其他感知,如虚幻轮廓,其中感知模糊性可能需要数百毫秒才能通过随时间整合多个脉冲来解决。当前模型在一个由脉冲细胞组成的层状皮质网络中,将快速前馈与较慢的反馈处理以及二元脉冲与模拟网络级特性协调起来,该网络的涌现特性定量地模拟了来自神经生理学实验的参数数据,包括虚幻轮廓的形成、非经典视觉感受野的结构以及自同步伽马振荡。这些层状动态为大脑如何通过使用设计合理的非线性反馈脉冲网络来解决局部信息模糊性提供了新的见解,这些网络在处理数据中的不确定性时会尽可能快地运行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验