Suppr超能文献

认知的神经动力学:计算认知神经科学教程

The Neurodynamics of Cognition: A Tutorial on Computational Cognitive Neuroscience.

作者信息

Ashby F Gregory, Helie Sebastien

机构信息

University of California, Santa Barbara.

出版信息

J Math Psychol. 2011 Aug 1;55(4):273-289. doi: 10.1016/j.jmp.2011.04.003.

Abstract

Computational Cognitive Neuroscience (CCN) is a new field that lies at the intersection of computational neuroscience, machine learning, and neural network theory (i.e., connectionism). The ideal CCN model should not make any assumptions that are known to contradict the current neuroscience literature and at the same time provide good accounts of behavior and at least some neuroscience data (e.g., single-neuron activity, fMRI data). Furthermore, once set, the architecture of the CCN network and the models of each individual unit should remain fixed throughout all applications. Because of the greater weight they place on biological accuracy, CCN models differ substantially from traditional neural network models in how each individual unit is modeled, how learning is modeled, and how behavior is generated from the network. A variety of CCN solutions to these three problems are described. A real example of this approach is described, and some advantages and limitations of the CCN approach are discussed.

摘要

计算认知神经科学(CCN)是一个新兴领域,它处于计算神经科学、机器学习和神经网络理论(即联结主义)的交叉点。理想的CCN模型不应做出任何已知与当前神经科学文献相矛盾的假设,同时要能很好地解释行为并至少能解释一些神经科学数据(例如单神经元活动、功能磁共振成像数据)。此外,一旦设定,CCN网络的架构和每个单独单元的模型在所有应用中都应保持固定。由于更注重生物学准确性,CCN模型在每个单独单元的建模方式、学习的建模方式以及如何从网络生成行为方面与传统神经网络模型有很大不同。本文描述了针对这三个问题的多种CCN解决方案。文中还描述了这种方法的一个实际例子,并讨论了CCN方法的一些优点和局限性。

相似文献

1
The Neurodynamics of Cognition: A Tutorial on Computational Cognitive Neuroscience.
J Math Psychol. 2011 Aug 1;55(4):273-289. doi: 10.1016/j.jmp.2011.04.003.
2
Beyond the "Conceptual Nervous System": Can computational cognitive neuroscience transform learning theory?
Behav Processes. 2019 Oct;167:103908. doi: 10.1016/j.beproc.2019.103908. Epub 2019 Aug 3.
3
Perceptual category learning and visual processing: An exercise in computational cognitive neuroscience.
Neural Netw. 2017 May;89:31-38. doi: 10.1016/j.neunet.2017.02.010. Epub 2017 Mar 6.
5
Cognitive Computational Neuroscience: A New Conference for an Emerging Discipline.
Trends Cogn Sci. 2018 May;22(5):365-367. doi: 10.1016/j.tics.2018.02.008. Epub 2018 Feb 27.
6
Cognitive network neuroscience.
J Cogn Neurosci. 2015 Aug;27(8):1471-91. doi: 10.1162/jocn_a_00810. Epub 2015 Mar 24.
8
Large-scale brain network dynamics supporting adolescent cognitive control.
J Neurosci. 2014 Oct 15;34(42):14096-107. doi: 10.1523/JNEUROSCI.1634-14.2014.
9
Investigating cognitive neuroscience theories of human intelligence: A connectome-based predictive modeling approach.
Hum Brain Mapp. 2023 Mar;44(4):1647-1665. doi: 10.1002/hbm.26164. Epub 2022 Dec 20.

引用本文的文献

1
Decision-making and performance in the Iowa Gambling Task: recent ERP findings and clinical implications.
Front Psychol. 2025 Mar 19;16:1492471. doi: 10.3389/fpsyg.2025.1492471. eCollection 2025.
2
A biophysical model for dopamine modulating working memory through reward system in obsessive-compulsive disorder.
Cogn Neurodyn. 2024 Aug;18(4):1895-1911. doi: 10.1007/s11571-023-09999-z. Epub 2023 Aug 25.
3
A computational model of prefrontal and striatal interactions in perceptual category learning.
Brain Cogn. 2023 Jun;168:105970. doi: 10.1016/j.bandc.2023.105970. Epub 2023 Apr 21.
4
Grounding Mental Representations in a Virtual Multi-Level Functional Framework.
J Cogn. 2023 Jan 12;6(1):6. doi: 10.5334/joc.249. eCollection 2023.
5
Modulation of Dopamine for Adaptive Learning: A Neurocomputational Model.
Comput Brain Behav. 2021 Mar;4(1):34-52. doi: 10.1007/s42113-020-00083-x. Epub 2020 Jun 12.
6
Modeling the Synchronization of Multimodal Perceptions as a Basis for the Emergence of Deterministic Behaviors.
Front Neurorobot. 2020 Dec 3;14:570358. doi: 10.3389/fnbot.2020.570358. eCollection 2020.
7
Symbolic Modeling of Asynchronous Neural Dynamics Reveals Potential Synchronous Roots for the Emergence of Awareness.
Front Comput Neurosci. 2019 Feb 12;13:1. doi: 10.3389/fncom.2019.00001. eCollection 2019.
8
Novel representations that support rule-based categorization are acquired on-the-fly during category learning.
Psychol Res. 2019 Apr;83(3):544-566. doi: 10.1007/s00426-019-01157-7. Epub 2019 Feb 26.
9
A New Computational Model for Astrocytes and Their Role in Biologically Realistic Neural Networks.
Comput Intell Neurosci. 2018 Jul 5;2018:3689487. doi: 10.1155/2018/3689487. eCollection 2018.
10
A Neurodynamic Model of Feature-Based Spatial Selection.
Front Psychol. 2018 Mar 28;9:417. doi: 10.3389/fpsyg.2018.00417. eCollection 2018.

本文引用的文献

1
Précis of Unified theories of cognition.
Behav Brain Sci. 1992 Sep;15(3):425-37. doi: 10.1017/S0140525X00069478.
2
Functional mapping of sequence learning in normal humans.
J Cogn Neurosci. 1995 Fall;7(4):497-510. doi: 10.1162/jocn.1995.7.4.497.
3
Neuromodulatory control of striatal plasticity and behavior.
Curr Opin Neurobiol. 2011 Apr;21(2):322-7. doi: 10.1016/j.conb.2011.01.005. Epub 2011 Feb 16.
4
Cortical and striatal contributions to automaticity in information-integration categorization.
Neuroimage. 2011 Jun 1;56(3):1791-802. doi: 10.1016/j.neuroimage.2011.02.011. Epub 2011 Feb 18.
5
Six principles for biologically based computational models of cortical cognition.
Trends Cogn Sci. 1998 Nov 1;2(11):455-62. doi: 10.1016/s1364-6613(98)01241-8.
6
A computational model of how cholinergic interneurons protect striatal-dependent learning.
J Cogn Neurosci. 2011 Jun;23(6):1549-66. doi: 10.1162/jocn.2010.21523. Epub 2010 Jun 3.
7
Motor sequences and the basal ganglia: kinematics, not habits.
J Neurosci. 2010 Jun 2;30(22):7685-90. doi: 10.1523/JNEUROSCI.0163-10.2010.
8
Neural computations associated with goal-directed choice.
Curr Opin Neurobiol. 2010 Apr;20(2):262-70. doi: 10.1016/j.conb.2010.03.001. Epub 2010 Mar 24.
9
Running as fast as it can: how spiking dynamics form object groupings in the laminar circuits of visual cortex.
J Comput Neurosci. 2010 Apr;28(2):323-46. doi: 10.1007/s10827-009-0211-1. Epub 2010 Jan 29.
10
The neural basis of the speed-accuracy tradeoff.
Trends Neurosci. 2010 Jan;33(1):10-6. doi: 10.1016/j.tins.2009.09.002. Epub 2009 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验