Suppr超能文献

认知的神经动力学:计算认知神经科学教程

The Neurodynamics of Cognition: A Tutorial on Computational Cognitive Neuroscience.

作者信息

Ashby F Gregory, Helie Sebastien

机构信息

University of California, Santa Barbara.

出版信息

J Math Psychol. 2011 Aug 1;55(4):273-289. doi: 10.1016/j.jmp.2011.04.003.

Abstract

Computational Cognitive Neuroscience (CCN) is a new field that lies at the intersection of computational neuroscience, machine learning, and neural network theory (i.e., connectionism). The ideal CCN model should not make any assumptions that are known to contradict the current neuroscience literature and at the same time provide good accounts of behavior and at least some neuroscience data (e.g., single-neuron activity, fMRI data). Furthermore, once set, the architecture of the CCN network and the models of each individual unit should remain fixed throughout all applications. Because of the greater weight they place on biological accuracy, CCN models differ substantially from traditional neural network models in how each individual unit is modeled, how learning is modeled, and how behavior is generated from the network. A variety of CCN solutions to these three problems are described. A real example of this approach is described, and some advantages and limitations of the CCN approach are discussed.

摘要

计算认知神经科学(CCN)是一个新兴领域,它处于计算神经科学、机器学习和神经网络理论(即联结主义)的交叉点。理想的CCN模型不应做出任何已知与当前神经科学文献相矛盾的假设,同时要能很好地解释行为并至少能解释一些神经科学数据(例如单神经元活动、功能磁共振成像数据)。此外,一旦设定,CCN网络的架构和每个单独单元的模型在所有应用中都应保持固定。由于更注重生物学准确性,CCN模型在每个单独单元的建模方式、学习的建模方式以及如何从网络生成行为方面与传统神经网络模型有很大不同。本文描述了针对这三个问题的多种CCN解决方案。文中还描述了这种方法的一个实际例子,并讨论了CCN方法的一些优点和局限性。

相似文献

5
Cognitive Computational Neuroscience: A New Conference for an Emerging Discipline.认知计算神经科学:新兴学科的新会议。
Trends Cogn Sci. 2018 May;22(5):365-367. doi: 10.1016/j.tics.2018.02.008. Epub 2018 Feb 27.
6
Cognitive network neuroscience.认知网络神经科学
J Cogn Neurosci. 2015 Aug;27(8):1471-91. doi: 10.1162/jocn_a_00810. Epub 2015 Mar 24.

引用本文的文献

10
A Neurodynamic Model of Feature-Based Spatial Selection.基于特征的空间选择的神经动力学模型。
Front Psychol. 2018 Mar 28;9:417. doi: 10.3389/fpsyg.2018.00417. eCollection 2018.

本文引用的文献

1
Précis of Unified theories of cognition.认知的统一理论纲要。
Behav Brain Sci. 1992 Sep;15(3):425-37. doi: 10.1017/S0140525X00069478.
2
Functional mapping of sequence learning in normal humans.正常人类序列学习的功能映射。
J Cogn Neurosci. 1995 Fall;7(4):497-510. doi: 10.1162/jocn.1995.7.4.497.
3
Neuromodulatory control of striatal plasticity and behavior.纹状体可塑性和行为的神经调节控制。
Curr Opin Neurobiol. 2011 Apr;21(2):322-7. doi: 10.1016/j.conb.2011.01.005. Epub 2011 Feb 16.
8
Neural computations associated with goal-directed choice.与目标导向选择相关的神经计算。
Curr Opin Neurobiol. 2010 Apr;20(2):262-70. doi: 10.1016/j.conb.2010.03.001. Epub 2010 Mar 24.
10
The neural basis of the speed-accuracy tradeoff.速度-准确性权衡的神经基础。
Trends Neurosci. 2010 Jan;33(1):10-6. doi: 10.1016/j.tins.2009.09.002. Epub 2009 Oct 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验