Suppr超能文献

RNA 三级结构稳定性对 Mg2+ 浓度的依赖性:Hill 方程和系数的解释。

Dependence of RNA tertiary structural stability on Mg2+ concentration: interpretation of the Hill equation and coefficient.

机构信息

Program in Molecular Biophysics and Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA.

出版信息

Biochemistry. 2010 Mar 9;49(9):1843-53. doi: 10.1021/bi902036j.

Abstract

The Mg(2+)-induced folding of RNA tertiary structures is readily observed via titrations of RNA with MgCl(2). Such titrations are commonly analyzed using a site binding formalism that includes a parameter, the Hill coefficient n, which is sometimes deemed the number of Mg(2+) ions bound by the native RNA at specific sites. However, the long-range nature of electrostatic interactions allows ions some distance from the RNA to stabilize an RNA structure. A complete description of all interactions taking place between Mg(2+) and an RNA uses a preferential interaction coefficient, Gamma(2+), which represents the "excess" Mg(2+) neutralizing the RNA charge. The difference between Gamma(2+) for the native and unfolded RNA forms (DeltaGamma(2+)) is the number of Mg(2+) ions "taken up" by an RNA upon folding. Here we determine the conditions under which the Hill coefficient n can be equated to the ion uptake DeltaGamma(2+) and find that two approximations are necessary: (i) the Mg(2+) activity coefficient is independent of concentration during a titration, and (ii) the dependence of DeltaGamma(2+) on Mg(2+) concentration is weak. Titration experiments with a Mg(2+)-binding dye and an adenine-binding riboswitch were designed to test these approximations. Inclusion of a 30-fold excess of KCl over MgCl(2) was sufficient to maintain a constant Mg(2+) activity coefficient. We also observed that Mg(2+) uptake by the RNA varied from near zero to approximately 2.6 as the Mg(2+) concentration increases over an approximately 100-fold range. It is possible to determine DeltaGamma(2+) from Mg(2+)-RNA titrations, but the values are only applicable to a limited range of solution conditions.

摘要

镁离子诱导的 RNA 三级结构折叠可以通过向 RNA 中添加 MgCl2 来轻松观察到。此类滴定通常使用位点结合形式主义进行分析,其中包括一个参数,即 Hill 系数 n,该参数有时被认为是特定位点结合的天然 RNA 结合的镁离子数量。然而,静电相互作用的远程性质允许一些距离 RNA 的离子稳定 RNA 结构。描述镁离子与 RNA 之间发生的所有相互作用的完整描述需要使用优先相互作用系数 Gamma(2+),它代表中和 RNA 电荷的“多余”镁离子。天然和未折叠 RNA 形式的 Gamma(2+)之间的差异(DeltaGamma(2+))是 RNA 折叠时“吸收”的镁离子数量。在这里,我们确定了可以将 Hill 系数 n 等同于离子吸收 DeltaGamma(2+)的条件,并发现需要两个近似条件:(i) 在滴定过程中,镁离子活度系数独立于浓度,(ii) DeltaGamma(2+)对镁离子浓度的依赖性较弱。设计了带有镁离子结合染料和腺嘌呤结合核糖开关的滴定实验来测试这些近似条件。在 MgCl2 中加入 30 倍过量的 KCl 足以保持恒定的镁离子活度系数。我们还观察到,随着镁离子浓度在大约 100 倍的范围内增加,RNA 对镁离子的摄取量从接近零变化到大约 2.6。可以从镁离子-RNA 滴定中确定 DeltaGamma(2+),但这些值仅适用于有限的溶液条件范围。

相似文献

2
Tertiary structure of an RNA pseudoknot is stabilized by "diffuse" Mg2+ ions.
Biochemistry. 2007 Mar 20;46(11):2973-83. doi: 10.1021/bi0616753. Epub 2007 Feb 23.
3
Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain.
Nucleic Acids Res. 2007;35(15):5262-73. doi: 10.1093/nar/gkm565. Epub 2007 Aug 7.
5
Evidence for a thermodynamically distinct Mg2+ ion associated with formation of an RNA tertiary structure.
J Am Chem Soc. 2011 Aug 31;133(34):13397-405. doi: 10.1021/ja2020923. Epub 2011 Aug 4.
6
Solution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudoknot.
J Mol Biol. 1999 Jun 25;289(5):1267-82. doi: 10.1006/jmbi.1999.2841.
7
Divalent ion competition reveals reorganization of an RNA ion atmosphere upon folding.
Nucleic Acids Res. 2017 May 5;45(8):4733-4742. doi: 10.1093/nar/gkw1327.
8
Stabilization of RNA structure by Mg ions. Specific and non-specific effects.
J Mol Biol. 1994 Apr 15;237(5):577-87. doi: 10.1006/jmbi.1994.1256.
9
Effects of Mg2+ on the free energy landscape for folding a purine riboswitch RNA.
Biochemistry. 2011 Apr 12;50(14):2790-9. doi: 10.1021/bi101948k. Epub 2011 Mar 21.

引用本文的文献

1
The RNA-Binding Domain of hnRNP U Extends beyond the RGG/RG Motifs.
Biochemistry. 2024 Feb 8. doi: 10.1021/acs.biochem.3c00510.
2
Goldilocks and RNA: where Mg2+ concentration is just right.
Nucleic Acids Res. 2023 May 8;51(8):3529-3539. doi: 10.1093/nar/gkad124.
3
Disentangling contact and ensemble epistasis in a riboswitch.
Biophys J. 2023 May 2;122(9):1600-1612. doi: 10.1016/j.bpj.2023.01.033. Epub 2023 Jan 28.
4
RsmG forms stable complexes with premature small subunit rRNA during bacterial ribosome biogenesis.
RSC Adv. 2020 Jun 11;10(38):22361-22369. doi: 10.1039/d0ra02732d. eCollection 2020 Jun 10.
8
Effects of Preferential Counterion Interactions on the Specificity of RNA Folding.
J Phys Chem Lett. 2018 Oct 4;9(19):5726-5732. doi: 10.1021/acs.jpclett.8b02086. Epub 2018 Sep 18.
10
The 2D Structure of the Preedited RPS12 mRNA Is Not Affected by Macromolecular Crowding.
J Nucleic Acids. 2017;2017:6067345. doi: 10.1155/2017/6067345. Epub 2017 Jun 18.

本文引用的文献

1
Ion-RNA interactions thermodynamic analysis of the effects of mono- and divalent ions on RNA conformational equilibria.
Methods Enzymol. 2009;469:433-63. doi: 10.1016/S0076-6879(09)69021-2. Epub 2009 Nov 17.
2
Direct quantitation of Mg2+-RNA interactions by use of a fluorescent dye.
Methods Enzymol. 2009;455:71-94. doi: 10.1016/S0076-6879(08)04203-1.
3
The complete VS ribozyme in solution studied by small-angle X-ray scattering.
Structure. 2008 Sep 10;16(9):1357-67. doi: 10.1016/j.str.2008.07.007.
4
Thermal methods for the analysis of RNA folding pathways.
Curr Protoc Nucleic Acid Chem. 2001 May;Chapter 11:Unit 11.3. doi: 10.1002/0471142700.nc1103s02.
6
Tertiary structure of an RNA pseudoknot is stabilized by "diffuse" Mg2+ ions.
Biochemistry. 2007 Mar 20;46(11):2973-83. doi: 10.1021/bi0616753. Epub 2007 Feb 23.
7
Mg2+-RNA interaction free energies and their relationship to the folding of RNA tertiary structures.
Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14003-8. doi: 10.1073/pnas.0606409103. Epub 2006 Sep 11.
8
Folding of the adenine riboswitch.
Chem Biol. 2006 Aug;13(8):857-68. doi: 10.1016/j.chembiol.2006.06.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验