Suppr超能文献

鱼类和两栖动物中胆汁盐的多样性:一条复杂生化途径的进化

Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway.

作者信息

Hagey Lee R, Møller Peter R, Hofmann Alan F, Krasowski Matthew D

机构信息

Department of Medicine, University of California-San Diego, MC 0063, La Jolla, California 92093, USA.

出版信息

Physiol Biochem Zool. 2010 Mar-Apr;83(2):308-21. doi: 10.1086/649966.

Abstract

Bile salts are the major end metabolites of cholesterol and are also important in lipid and protein digestion, as well as shaping of the gut microflora. Previous studies had demonstrated variation of bile salt structures across vertebrate species. We greatly extend prior surveys of bile salt variation in fish and amphibians, particularly in analysis of the biliary bile salts of Agnatha and Chondrichthyes. While there is significant structural variation of bile salts across all fish orders, bile salt profiles are generally stable within orders of fish and do not correlate with differences in diet. This large data set allowed us to infer evolutionary changes in the bile salt synthetic pathway. The hypothesized ancestral bile salt synthetic pathway, likely exemplified in extant hagfish, is simpler and much shorter than the pathway of most teleost fish and terrestrial vertebrates. Thus, the bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution. Analysis of the evolution of bile salt synthetic pathways provides a rich model system for the molecular evolution of a complex biochemical pathway in vertebrates.

摘要

胆汁盐是胆固醇的主要终末代谢产物,在脂质和蛋白质消化以及肠道微生物群的形成中也很重要。先前的研究已经证明了脊椎动物物种间胆汁盐结构的差异。我们极大地扩展了之前对鱼类和两栖动物胆汁盐差异的调查,特别是对无颌类和软骨鱼类胆汁胆汁盐的分析。虽然所有鱼类目之间胆汁盐存在显著的结构差异,但胆汁盐谱在鱼类目内通常是稳定的,并且与饮食差异无关。这个庞大的数据集使我们能够推断胆汁盐合成途径的进化变化。推测的祖先胆汁盐合成途径,可能以现存的盲鳗为例,比大多数硬骨鱼和陆生脊椎动物的途径更简单、更短。因此,在整个脊椎动物进化过程中,胆汁盐合成途径变得更长、更复杂。对胆汁盐合成途径进化的分析为脊椎动物复杂生化途径的分子进化提供了一个丰富的模型系统。

相似文献

1
Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway.
Physiol Biochem Zool. 2010 Mar-Apr;83(2):308-21. doi: 10.1086/649966.
3
Bile salts of vertebrates: structural variation and possible evolutionary significance.
J Lipid Res. 2010 Feb;51(2):226-46. doi: 10.1194/jlr.R000042. Epub 2009 Jul 28.
4
COMPLEX EVOLUTION OF BILE SALTS IN BIRDS.
Auk. 2010 Oct;127(4):820-831. doi: 10.1525/auk.2010.09155.
5
Evolution of the pregnane x receptor: adaptation to cross-species differences in biliary bile salts.
Mol Endocrinol. 2005 Jul;19(7):1720-39. doi: 10.1210/me.2004-0427. Epub 2005 Feb 17.
6
A phylogenetic survey of biliary lipids in vertebrates.
J Lipid Res. 2005 Oct;46(10):2221-32. doi: 10.1194/jlr.M500178-JLR200. Epub 2005 Aug 1.
7
Intestinal synthesis and secretion of bile salts as an adaptation to developmental biliary atresia in the sea lamprey.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11419-24. doi: 10.1073/pnas.1203008109. Epub 2012 Jun 25.
8
Biosynthesis and release of pheromonal bile salts in mature male sea lamprey.
BMC Biochem. 2013 Nov 4;14:30. doi: 10.1186/1471-2091-14-30.
10
Bile salts as semiochemicals in fish.
Chem Senses. 2014 Oct;39(8):647-54. doi: 10.1093/chemse/bju039. Epub 2014 Aug 23.

引用本文的文献

1
Modelling Peroxisomal Disorders in Zebrafish.
Cells. 2025 Jan 20;14(2):147. doi: 10.3390/cells14020147.
2
Pharmacological Mechanisms of Bile Acids Targeting the Farnesoid X Receptor.
Int J Mol Sci. 2024 Dec 20;25(24):13656. doi: 10.3390/ijms252413656.
4
Effect of bile salts on intestinal epithelial function in gilthead seabream (Sparus aurata).
Fish Physiol Biochem. 2024 Aug;50(4):1777-1790. doi: 10.1007/s10695-024-01369-8. Epub 2024 Jun 25.
5
The underappreciated diversity of bile acid modifications.
Cell. 2024 Mar 28;187(7):1801-1818.e20. doi: 10.1016/j.cell.2024.02.019. Epub 2024 Mar 11.
6
Another renaissance for bile acid gastrointestinal microbiology.
Nat Rev Gastroenterol Hepatol. 2024 May;21(5):348-364. doi: 10.1038/s41575-024-00896-2. Epub 2024 Feb 21.
7
Male lake char release taurocholic acid as part of a mating pheromone.
J Exp Biol. 2024 Jan 15;227(2). doi: 10.1242/jeb.246801. Epub 2024 Jan 25.
8
The direct and gut microbiota-mediated effects of dietary bile acids on the improvement of gut barriers in largemouth bass ().
Anim Nutr. 2023 Apr 20;14:32-42. doi: 10.1016/j.aninu.2023.03.008. eCollection 2023 Sep.
10
Structures and Biological Activities of New Bile Acids from the Gallbladder of .
Molecules. 2022 Nov 8;27(22):7671. doi: 10.3390/molecules27227671.

本文引用的文献

2
Bile salts of vertebrates: structural variation and possible evolutionary significance.
J Lipid Res. 2010 Feb;51(2):226-46. doi: 10.1194/jlr.R000042. Epub 2009 Jul 28.
3
Deep-sea mystery solved: astonishing larval transformations and extreme sexual dimorphism unite three fish families.
Biol Lett. 2009 Apr 23;5(2):235-9. doi: 10.1098/rsbl.2008.0722. Epub 2009 Jan 20.
4
Bile Acid sulfation: a pathway of bile acid elimination and detoxification.
Toxicol Sci. 2009 Apr;108(2):225-46. doi: 10.1093/toxsci/kfn268. Epub 2009 Jan 8.
7
Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics.
Cell Mol Life Sci. 2008 Aug;65(16):2461-83. doi: 10.1007/s00018-008-7568-6.
8
Ligand specificity and evolution of liver X receptors.
J Steroid Biochem Mol Biol. 2008 May;110(1-2):83-94. doi: 10.1016/j.jsbmb.2008.02.007. Epub 2008 Mar 10.
9
Evolution of pharmacologic specificity in the pregnane X receptor.
BMC Evol Biol. 2008 Apr 2;8:103. doi: 10.1186/1471-2148-8-103.
10
Evolution of the bile salt nuclear receptor FXR in vertebrates.
J Lipid Res. 2008 Jul;49(7):1577-87. doi: 10.1194/jlr.M800138-JLR200. Epub 2008 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验