Leibniz Institute for Neurobiology, Special Lab Non-Invasive Brain Imaging, Brenneckestr. 6, 39118 Magdeburg, Germany.
Neuroimage. 2010 May 1;50(4):1364-75. doi: 10.1016/j.neuroimage.2010.01.070. Epub 2010 Jan 28.
The purpose of this study was to determine how the history-dependent activation state of neuronal networks controls fMRI signals to incoming stimuli. Simultaneous electrophysiological and blood oxygen level-dependent (BOLD) responses were monitored during stimulation of the perforant pathway with low, high, and again low intensity but, otherwise identical pulse trains. Under three different anesthetics (alpha-chloralose, medetomidine, isoflurane) consecutive low intensity stimulation trains, set just below the threshold for population spike generation to single pulses, yielded a stable BOLD response, although at different magnitudes. The first high intensity train increased the BOLD response under all anesthetics and generated population spikes, with varying amplitudes and latencies (alpha-chloralose, metedomidine) or in a regular pattern (isoflurane). Concurrent to the second high intensity train, the BOLD response became minimal, then slowly increasing with subsequent trains (alpha-chloralose, metedomidine), or immediately rising to a stable level (isoflurane). Second train population spikes became regularized, but at low amplitudes and long latencies that were slowly reversed across trains (alpha-chloralose, medetomidine); while under isoflurane, amplitude and latencies became stabilized with the second train. In comparison to initial stimulation, the final low intensity stimulation trains failed to produce BOLD responses (alpha-chloralose, medetomidine), or left the response unchanged (isoflurane), only reaching stable potentiation of population spikes when under isoflurane. Therefore, the fate of BOLD responses depends on whether a new stable functional state of the intrinsic network can be reached after high intensity stimulation.
这项研究的目的是确定神经元网络的历史相关激活状态如何控制传入刺激的 fMRI 信号。在以低、高和再次低强度但脉冲串完全相同的方式刺激穿通路径时,同时监测电生理和血氧水平依赖性 (BOLD) 反应。在三种不同的麻醉剂(α-氯醛、美托咪定、异氟烷)下,连续的低强度刺激序列设置在产生群体峰电位的单个脉冲阈值以下,产生了稳定的 BOLD 反应,尽管幅度不同。第一个高强度训练在所有麻醉剂下增加了 BOLD 反应,并产生了群体峰电位,其幅度和潜伏期不同(α-氯醛、美托咪定)或呈规则模式(异氟烷)。与第二个高强度训练同时,BOLD 反应变得最小,然后随着后续训练缓慢增加(α-氯醛、美托咪定),或者立即上升到稳定水平(异氟烷)。第二束群体峰电位变得规则化,但幅度低且潜伏期长,随着训练逐渐逆转(α-氯醛、美托咪定);而在异氟烷下,幅度和潜伏期随第二束训练而稳定。与初始刺激相比,最后低强度刺激束未能产生 BOLD 反应(α-氯醛、美托咪定),或使反应保持不变(异氟烷),只有在异氟烷下才能达到群体峰电位的稳定增强。因此,BOLD 反应的命运取决于高强度刺激后是否能够达到内在网络的新稳定功能状态。