Suppr超能文献

一个目标导向话语选择的计算神经模型。

A computational neural model of goal-directed utterance selection.

机构信息

Centre for Language and Speech Technology, Radboud University of Nijmegen, Postbus 9103, 6500 HD Nijmegen, The Netherlands.

出版信息

Neural Netw. 2010 Jun;23(5):592-606. doi: 10.1016/j.neunet.2010.01.003. Epub 2010 Jan 13.

Abstract

It is generally agreed that much of human communication is motivated by extra-linguistic goals: we often make utterances in order to get others to do something, or to make them support our cause, or adopt our point of view, etc. However, thus far a computational foundation for this view on language use has been lacking. In this paper we propose such a foundation using Markov Decision Processes. We borrow computational components from the field of action selection and motor control, where a neurobiological basis of these components has been established. In particular, we make use of internal models (i.e., next-state transition functions defined on current state action pairs). The internal model is coupled with reinforcement learning of a value function that is used to assess the desirability of any state that utterances (as well as certain non-verbal actions) can bring about. This cognitive architecture is tested in a number of multi-agent game simulations. In these computational experiments an agent learns to predict the context-dependent effects of utterances by interacting with other agents that are already competent speakers. We show that the cognitive architecture can account for acquiring the capability of deciding when to speak in order to achieve a certain goal (instead of performing a non-verbal action or simply doing nothing), whom to address and what to say.

摘要

人们普遍认为,人类的交流很大程度上是受非语言目标驱动的:我们经常发表言论,是为了让别人做某事,或者支持我们的事业,或者采纳我们的观点等。然而,到目前为止,这种语言使用观还缺乏计算基础。本文使用马尔可夫决策过程(Markov Decision Processes)来为这种语言使用观建立计算基础。我们从行为选择和运动控制领域借用了计算组件,这些组件在神经生物学方面已经有了基础。具体来说,我们使用了内部模型(即在当前状态动作对上定义的下一状态转换函数)。内部模型与价值函数的强化学习相结合,该价值函数用于评估任何可以通过言语(以及某些非言语动作)带来的状态的可取性。该认知架构在多个多代理游戏模拟中进行了测试。在这些计算实验中,代理通过与已经能够说话的其他代理进行交互,学习预测与上下文相关的言语效果。我们表明,该认知架构可以解释代理是如何决定何时说话以实现特定目标(而不是执行非言语动作或干脆什么也不做)、向谁说话以及说什么。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验