Suppr超能文献

帕金森病中海马调节纹状体中间神经元树突重建:谷氨酸释放的调制可逆转多巴胺耗竭诱导的树突棘丢失。

Cortical regulation of striatal medium spiny neuron dendritic remodeling in parkinsonism: modulation of glutamate release reverses dopamine depletion-induced dendritic spine loss.

机构信息

Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37212, USA.

出版信息

Cereb Cortex. 2010 Oct;20(10):2423-32. doi: 10.1093/cercor/bhp317. Epub 2010 Jan 29.

Abstract

Striatal medium spiny neurons (MSNs) receive glutamatergic afferents from the cerebral cortex and dopaminergic inputs from the substantia nigra (SN). Striatal dopamine loss decreases the number of MSN dendritic spines. This loss of spines has been suggested to reflect the removal of tonic dopamine inhibitory control over corticostriatal glutamatergic drive, with increased glutamate release culminating in MSN spine loss. We tested this hypothesis in two ways. We first determined in vivo if decortication reverses or prevents dopamine depletion-induced spine loss by placing motor cortex lesions 4 weeks after, or at the time of, 6-hydroxydopamine lesions of the SN. Animals were sacrificed 4 weeks after cortical lesions. Motor cortex lesions significantly reversed the loss of MSN spines elicited by dopamine denervation; a similar effect was observed in the prevention experiment. We then determined if modulating glutamate release in organotypic cocultures prevented spine loss. Treatment of the cultures with the mGluR2/3 agonist LY379268 to suppress corticostriatal glutamate release completely blocked spine loss in dopamine-denervated cultures. These studies provide the first evidence to show that MSN spine loss associated with parkinsonism can be reversed and point to suppression of corticostriatal glutamate release as a means of slowing progression in Parkinson's disease.

摘要

纹状体中型棘突神经元(MSNs)接收来自大脑皮层的谷氨酸能传入,来自黑质(SN)的多巴胺输入。纹状体多巴胺的丧失减少了 MSN 树突棘的数量。这种棘突的丧失被认为反映了对皮质纹状体谷氨酸驱动的紧张性多巴胺抑制控制的去除,增加的谷氨酸释放最终导致 MSN 棘突丧失。我们通过两种方式检验了这个假设。我们首先通过在 SN 的 6-羟多巴胺损伤后 4 周或同时放置运动皮层损伤来确定在体内去皮质是否逆转或预防多巴胺耗竭诱导的棘突丧失。动物在皮质损伤后 4 周被处死。运动皮层损伤显著逆转了多巴胺去神经引起的 MSN 棘突丧失;在预防实验中观察到类似的效果。然后,我们确定调节器官型共培养物中的谷氨酸释放是否可以防止棘突丧失。用 mGluR2/3 激动剂 LY379268 处理培养物以抑制皮质纹状体谷氨酸释放完全阻止了多巴胺剥夺培养物中的棘突丧失。这些研究首次提供证据表明,与帕金森病相关的 MSN 棘突丧失可以被逆转,并指出抑制皮质纹状体谷氨酸释放是减缓帕金森病进展的一种手段。

相似文献

2
Cortical regulation of dopamine depletion-induced dendritic spine loss in striatal medium spiny neurons.
Neuroscience. 2007 Oct 26;149(2):457-64. doi: 10.1016/j.neuroscience.2007.06.044. Epub 2007 Jul 17.
3
Striatal plasticity and medium spiny neuron dendritic remodeling in parkinsonism.
Parkinsonism Relat Disord. 2007;13 Suppl 3(Suppl 3):S251-8. doi: 10.1016/S1353-8020(08)70012-9.
5
Striatal spine plasticity in Parkinson's disease: pathological or not?
Parkinsonism Relat Disord. 2009 Dec;15 Suppl 3(Suppl 3):S156-61. doi: 10.1016/S1353-8020(09)70805-3.
6
Dopaminergic treatment weakens medium spiny neuron collateral inhibition in the parkinsonian striatum.
J Neurophysiol. 2017 Mar 1;117(3):987-999. doi: 10.1152/jn.00683.2016. Epub 2016 Dec 7.
8
Differential striatal spine pathology in Parkinson's disease and cocaine addiction: a key role of dopamine?
Neuroscience. 2013 Oct 22;251:2-20. doi: 10.1016/j.neuroscience.2013.07.011. Epub 2013 Jul 16.
10
L-DOPA treatment selectively restores spine density in dopamine receptor D2-expressing projection neurons in dyskinetic mice.
Biol Psychiatry. 2014 May 1;75(9):711-22. doi: 10.1016/j.biopsych.2013.05.006. Epub 2013 Jun 13.

引用本文的文献

1
Resilience of striatal synaptic plasticity over early structural adaptations in premotor parkinsonism.
NPJ Parkinsons Dis. 2025 Jun 3;11(1):146. doi: 10.1038/s41531-025-00994-1.
2
Effects of exercise training on the nigrostriatal glutamatergic pathway and receptor interactions in Parkinson's disease: a systematic review.
Front Aging Neurosci. 2025 Feb 11;17:1512278. doi: 10.3389/fnagi.2025.1512278. eCollection 2025.
4
Control of Dopamine Signal in High-Order Receptor Complex on Striatal Astrocytes.
Int J Mol Sci. 2024 Aug 7;25(16):8610. doi: 10.3390/ijms25168610.
6
Morphological changes in perisynaptic astrocytes induced by dopamine neuronal degeneration in the striatum of rats.
Heliyon. 2024 Mar 5;10(6):e27637. doi: 10.1016/j.heliyon.2024.e27637. eCollection 2024 Mar 30.
7
Exercise improves behavioral dysfunction and inhibits the spontaneous excitatory postsynaptic current of D2-medium spiny neurons.
Front Aging Neurosci. 2022 Dec 1;14:1001256. doi: 10.3389/fnagi.2022.1001256. eCollection 2022.
8
Glycation modulates glutamatergic signaling and exacerbates Parkinson's disease-like phenotypes.
NPJ Parkinsons Dis. 2022 Apr 25;8(1):51. doi: 10.1038/s41531-022-00314-x.

本文引用的文献

1
Combination of diOlistic labeling with retrograde tract tracing and immunohistochemistry.
J Neurosci Methods. 2009 Nov 15;184(2):332-6. doi: 10.1016/j.jneumeth.2009.08.016. Epub 2009 Aug 25.
2
The glutamate homeostasis hypothesis of addiction.
Nat Rev Neurosci. 2009 Aug;10(8):561-72. doi: 10.1038/nrn2515. Epub 2009 Jul 1.
3
Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation.
Biol Psychiatry. 2009 Sep 15;66(6):603-13. doi: 10.1016/j.biopsych.2009.04.025. Epub 2009 Jun 11.
4
Thin, stubby or mushroom: spine pathology in Alzheimer's disease.
Curr Alzheimer Res. 2009 Jun;6(3):261-8. doi: 10.2174/156720509788486554.
7
AMPA glutamate receptor subunits 1 and 2 regulate dendrite complexity and spine motility in neurons of the developing neocortex.
Neuroscience. 2009 Mar 3;159(1):172-82. doi: 10.1016/j.neuroscience.2008.11.038. Epub 2008 Dec 7.
8
Dopaminergic denervation and spine loss in the striatum of MPTP-treated monkeys.
Exp Neurol. 2009 Feb;215(2):220-7. doi: 10.1016/j.expneurol.2008.09.025. Epub 2008 Oct 11.
10
Afferent influences on striatal development in organotypic cocultures.
Synapse. 2008 Jul;62(7):487-500. doi: 10.1002/syn.20518.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验