Yerkes National Primate Research Center and Department of Neurology, Emory University, Atlanta, GA 30322, USA.
Parkinsonism Relat Disord. 2009 Dec;15 Suppl 3(Suppl 3):S156-61. doi: 10.1016/S1353-8020(09)70805-3.
Parkinson's disease (PD) is characterized by a dramatic loss of dopamine that underlies complex structural and functional changes in striatal projection neurons. A key alteration that has been reported in various rodent models and PD patients is a significant reduction in striatal dendritic spine density. Our recent findings indicate that striatal spine loss is also a prominent feature of parkinsonism in MPTP-treated monkeys. In these animals, striatal spine plasticity is tightly linked with the degree of striatal dopamine denervation. It affects predominantly the sensorimotor striatal territory (i.e. the post-commissural putamen) and targets both direct and indirect striatofugal neurons. However, electron microscopic 3D reconstruction studies demonstrate that the remaining spines in the dopamine-denervated striatum of parkinsonian monkeys undergo major morphological and ultrastructural changes characteristic of increased synaptic efficacy. Although both corticostriatal and thalamostriatal glutamatergic afferents display such plastic changes, the ultrastructural features of pre- and post-synaptic elements at these synapses are consistent with a higher strength of corticostriatal synapses over thalamic inputs in both normal and pathological conditions. Thus, striatal projection neurons and their glutamatergic afferents are endowed with a high degree of structural and functional plasticity. In parkinsonism, the striatal dopamine denervation induces major spine loss on medium spiny neurons and generates a significant remodeling of corticostriatal and thalamostriatal glutamatergic synapses, consistent with increased synaptic transmission. Future studies are needed to further characterize the mechanisms underlying striatal spine plasticity, and determine if it represents a pathological feature or compensatory process of PD.
帕金森病(PD)的特征是多巴胺的急剧丧失,这是纹状体投射神经元复杂结构和功能变化的基础。在各种啮齿动物模型和 PD 患者中已经报道了一个关键的改变,即纹状体树突棘密度显著降低。我们最近的研究结果表明,纹状体棘突丢失也是 MPTP 处理的猴子帕金森病的一个显著特征。在这些动物中,纹状体棘突可塑性与纹状体多巴胺去神经支配的程度密切相关。它主要影响感觉运动纹状体区域(即后连合壳核),并针对直接和间接的纹状体传出神经元。然而,电子显微镜 3D 重建研究表明,帕金森猴多巴胺去神经纹状体中剩余的棘突经历了主要的形态和超微结构变化,其特征是突触效能增加。尽管皮质纹状体和丘脑纹状体谷氨酸能传入都显示出这种可塑性变化,但这些突触的前突触和后突触元件的超微结构特征与正常和病理条件下皮质纹状体突触的强度高于丘脑输入相一致。因此,纹状体投射神经元及其谷氨酸能传入具有高度的结构和功能可塑性。在帕金森病中,纹状体多巴胺去神经支配导致中等棘突神经元上的主要棘突丢失,并产生皮质纹状体和丘脑纹状体谷氨酸能突触的显著重塑,与突触传递增加一致。需要进一步的研究来进一步表征纹状体棘突可塑性的机制,并确定它是否代表 PD 的病理特征或代偿过程。