Computational and Systems Biology, Singapore-Massachusetts Institute of Technology Alliance, Singapore 117576; Departments of Biological Sciences, Singapore 117543.
Laboratory of Molecular Biostructural and Nanomaterial Modeling, AREA Science Park, Trieste 34149, Italy; Cancer Research Institute, Slovak Academy of Sciences, 83391 Bratislava, Slovakia.
J Biol Chem. 2010 Mar 26;285(13):9898-9907. doi: 10.1074/jbc.M109.059774. Epub 2010 Jan 29.
Beta-propeller proteins function in catalysis, protein-protein interaction, cell cycle regulation, and innate immunity. The galactose-binding protein (GBP) from the plasma of the horseshoe crab, Carcinoscorpius rotundicauda, is a beta-propeller protein that functions in antimicrobial defense. Studies have shown that upon binding to Gram-negative bacterial lipopolysaccharide (LPS), GBP interacts with C-reactive protein (CRP) to form a pathogen-recognition complex, which helps to eliminate invading microbes. However, the molecular basis of interactions between GBP and LPS and how it interplays with CRP remain largely unknown. By homology modeling, we showed that GBP contains six beta-propeller/Tectonin domains. Ligand docking indicated that Tectonin domains 6 to 1 likely contain the LPS binding sites. Protein-protein interaction studies demonstrated that Tectonin domain 4 interacts most strongly with CRP. Hydrogen-deuterium exchange mass spectrometry mapped distinct sites of GBP that interact with LPS and with CRP, consistent with in silico predictions. Furthermore, infection condition (lowered Ca(2+) level) increases GBP-CRP affinity by 1000-fold. Resupplementing the system with a physiological level of Ca(2+) did not reverse the protein-protein affinity to the basal state, suggesting that the infection-induced complex had undergone irreversible conformational change. We propose that GBP serves as a bridging molecule, participating in molecular interactions, GBP-LPS and GBP-CRP, to form a stable pathogen-recognition complex. The interaction interfaces in these two partners suggest that Tectonin domains can differentiate self/nonself, crucial to frontline defense against infection. In addition, GBP shares architectural and functional homologies to a human protein, hTectonin, suggesting its evolutionarily conservation for approximately 500 million years, from horseshoe crab to human.
β 三叶螺旋蛋白在催化、蛋白-蛋白相互作用、细胞周期调控和先天免疫中发挥作用。来自圆尾蝎(Carcinoscorpius rotundicauda)血浆的半乳糖结合蛋白(GBP)是一种β 三叶螺旋蛋白,在抗菌防御中发挥作用。研究表明,GBP 与革兰氏阴性细菌脂多糖(LPS)结合后,与 C 反应蛋白(CRP)相互作用形成病原体识别复合物,有助于消除入侵的微生物。然而,GBP 与 LPS 相互作用的分子基础以及与 CRP 的相互作用方式在很大程度上仍不清楚。通过同源建模,我们发现 GBP 包含六个β 三叶螺旋/Tectonin 结构域。配体对接表明,Tectonin 结构域 6 到 1 可能包含 LPS 结合位点。蛋白质-蛋白质相互作用研究表明,Tectonin 结构域 4 与 CRP 相互作用最强。氢氘交换质谱映射了 GBP 与 LPS 和 CRP 相互作用的不同位点,与计算机预测一致。此外,感染条件(降低 Ca2+水平)使 GBP-CRP 亲和力增加 1000 倍。用生理水平的 Ca2+补充系统不会使蛋白质-蛋白质亲和力恢复到基础状态,这表明感染诱导的复合物已经发生了不可逆转的构象变化。我们提出,GBP 作为一种桥接分子,参与分子相互作用,即 GBP-LPS 和 GBP-CRP,形成稳定的病原体识别复合物。这两个伴侣的相互作用界面表明,Tectonin 结构域可以区分自身/非自身,这对于对抗感染的一线防御至关重要。此外,GBP 与人类蛋白 hTectonin 在结构和功能上具有同源性,这表明它在大约 5 亿年的时间里从鲎到人类都经历了进化上的保守。