Suppr超能文献

游泳蛙类的运动学和流体动力学分析揭示了产生推力的机制在种间存在显著差异。

Kinematics and hydrodynamics analysis of swimming anurans reveals striking inter-specific differences in the mechanism for producing thrust.

机构信息

The Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142, USA.

出版信息

J Exp Biol. 2010 Feb 15;213(4):621-34. doi: 10.1242/jeb.032631.

Abstract

This study aimed to compare the swimming kinematics and hydrodynamics within and among aquatic and semi-aquatic/terrestrial frogs. High-speed video was used to obtain kinematics of the leg joints and feet as animals swam freely across their natural range of speeds. Blade element analysis was then used to model the hydrodynamic thrust as a function of foot kinematics. Two purely aquatic frogs, Xenopus laevis and Hymenochirus boettgeri, were compared with two semi-aquatic/terrestrial frogs, Rana pipiens and Bufo americanus. The four species performed similarly. Among swimming strokes, peak stroke velocity ranged from 3.3+/-1.1 to 20.9+/-2.5, from 6.8+/-2.1 to 28.6+/-3.7 and from 4.9+/-0.5 to 20.9+/-4.1 body lengths per second (BL s(-1)) in X. laevis, H. boettgeri and R. pipiens, respectively (means +/- s.d.; N=4 frogs for each). B. americanus swam much more slowly at 3.1+/-0.3 to 7.0+/-2.0 BL s(-1) (N=3 frogs). Time-varying joint kinematics patterns were superficially similar among species. Because foot kinematics result from the cumulative motion of joints proximal to the feet, small differences in time-varying joint kinematics among species resulted in species-specific foot kinematics (therefore hydrodynamics) patterns. To obtain a simple measure of the hydrodynamically useful motion of the foot, this study uses 'effective foot velocity' (EFV): a measure of the component of foot velocity along the axis of swimming. Resolving EFV into translational and rotational components allows predictions of species-specific propulsion strategies. Additionally, a novel kinematic analysis is presented here that enables the partitioning of translational and rotational foot velocity into velocity components contributed by extension at each individual limb joint. Data from the kinematics analysis show that R. pipiens and B. americanus translated their feet faster than their body moved forward, resulting in positive net translational EFV. Conversely, translational EFV was slower than the body velocity in H. boettgeri and X. laevis, resulting in negative net translational EFV. Consequently, the translational component of thrust (caused mostly by hip, knee and ankle extension) was twofold higher than rotational thrust in Rana pipiens. Likewise, rotational components of thrust were nearly twofold higher than translational components in H. boettgeri. X. laevis, however, was the most skewed species observed, generating nearly 100% of total thrust by foot rotation generated by hip, ankle and tmt extension. Thus, this study presents a simple kinematics analysis that is predictive of hydrodynamic differences among species. Such differences in kinematics reveal a continuum of different propulsive strategies ranging from mostly rotation-powered (X. laevis) to mostly translation-powered (R. pipiens) swimming.

摘要

本研究旨在比较水生和半水生/陆生青蛙的游泳运动学和水动力。高速视频用于获取动物在其自然速度范围内游泳时腿部关节和脚部的运动学。然后,使用叶片元素分析将足部运动学建模为水动力推力的函数。将两种纯水生青蛙,非洲爪蟾和斑腿树蛙,与两种半水生/陆生青蛙,牛蛙和牛蛙进行了比较。这四个物种的表现相似。在游泳动作中,峰值划水速度范围为 3.3+/-1.1 到 20.9+/-2.5、6.8+/-2.1 到 28.6+/-3.7 和 4.9+/-0.5 到 20.9+/-4.1 体长每秒(BL s(-1))在 X.laevis、H.boettgeri 和 R.pipiens 中(平均值+/-标准差;每个物种 N=4 只青蛙)。牛蛙的游泳速度慢得多,为 3.1+/-0.3 至 7.0+/-2.0 BL s(-1)(N=3 只青蛙)。物种之间的关节运动学模式在时间上相似。由于足部运动学是由足部近端关节的累积运动产生的,因此物种之间足部运动学的微小差异导致了特定物种的足部运动学(因此是水动力)模式。为了获得脚部有用的水动力运动的简单度量,本研究使用“有效脚部速度”(EFV):沿游泳轴的脚部速度分量的度量。将 EFV 分解为平移和旋转分量可以预测特定物种的推进策略。此外,本文提出了一种新的运动学分析方法,该方法可以将平移和旋转足部速度分解为每个单独肢体关节贡献的速度分量。运动学分析数据表明,牛蛙和牛蛙比身体向前移动更快地平移脚部,从而产生正净平移 EFV。相反,在斑腿树蛙和非洲爪蟾中,平移 EFV 比身体速度慢,导致负净平移 EFV。因此,在牛蛙中,推力的平移分量(主要由髋关节、膝关节和踝关节伸展引起)比旋转推力高两倍。同样,在斑腿树蛙中,推力的旋转分量几乎是平移分量的两倍。然而,非洲爪蟾是观察到的最偏斜的物种,通过髋关节、踝关节和跗骨的伸展产生的足部旋转产生了近 100%的总推力。因此,本研究提出了一种简单的运动学分析方法,可以预测物种之间的水动力差异。这些运动学差异揭示了从主要由旋转驱动(非洲爪蟾)到主要由平移驱动(牛蛙)的游泳等不同推进策略的连续体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验